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Abstract
The calculation of a confidence interval, which together with the hypothesis testing is
the best known procedure of inferential statistics, has as result the probability that a
certain statistical parameter is contained in a certain part of the real line. However,
this result does not enjoy of unanimity because it is widely believed the not be strictly
a probability and that must be called only confidence. To this is added the perplexity
of being able to replace, as is highlighted in the article, the said probability with many
other equally reliable. These uncertainties are tackled by distinguishing, among all those
of the same event, only one probability true and therefore not merely conventional,
and then choosing, as result of the determination of a confidence interval, the true
inherent probability which, although it is not exactly calculable, however is unlimitedly
approximable. For this purpose, it is preliminarily dedicated much care in defining the
symbology and the concepts of logic and set theory needed for the subsequent deductions,
substantially taking again notions of [1] such as the original algorithmic definitions of
relations and operations between sets, the unusual formulation concerning the products
and intersections of sets, and an expanded form of the fundamental tautology that
includes the “law of contraposition”. The treatment of events and probabilities exposed
in [1] is summarized, simplified and integrated by new decisive positions. In particular
two important probabilities are deduced from properties of the composite events. It
is thoroughly analyzed the event constituted by the happen an unknown constant into
a certain part of the real line and its probability, as base for the treatment of the
confidence interval which is then deduced and specified in detail for the two cases, of
great importance in the experimental sciences, when the statistical parameter is the
mean or the variance of a normal random variable.

Introduction
The calculation of a confidence interval is, together with the hypothesis testing, the
more known procedure of inferential statistics. This procedure determines, by means of
a sample, a confidence (i.e. probability) that a parameter of the inherent population is
contained in an arbitrary part (e.g. interval) of the real line.

However the perplexity of this probability is immediately revealed by the fact that
the replacement of the said sample with an its subset determines a probability generally
different and equally credible of the same event. Moreover many authors believe that
the confidence in question is not a real probability (but, in truth, with arguments that
do not seem decisive in front of the logical coherence of the following deductions).

In this work a remedy to this situation is achieved by defining a probability that,
among all those of the same event, stands out as true and hence not is merely conven-
tional, and that in the case of the confidence interval, also if not is exactly calculable,
is however unlimitedly approximable.
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For this purpose, it is preliminarily dedicated much care in defining the symbology
and the concepts of logic and set theory needed for the subsequent deductions, substan-
tially taking again notions of [1] such as the original algorithmic definitions of relations
and operations between sets, the unusual formulation concerning the equality between
the intersection of products and the product of intersections, and an expanded form of
the important tautology that includes the law of contraposition.

The treatment of events and probabilities exposed in [1] is summarized, simplified
and integrated by new decisive positions. In particular two important probabilities are
deduced from properties of the composite events. It is thoroughly analyzed the event
constituted by the happen an unknown constant into a certain part of the real line and
its probability, because fundamental for the treatment of the confidence interval which
is then deduced and specified in detail for the two cases, of great importance in the
experimental sciences, when the statistical parameter is the mean or the variance of a
normal random variable.

Preliminaries of Logic and Set Theory
In relation to the following logical concepts, reference is made to [1–4].

A proposition is a sequence of graphic symbols. A name is a proposition that relates
and represents a certain object, which alone expresses a meaning (e.g. “home”) or not
(e.g. “a”), and which attributes to such object the properties indicated by its eventual
meaning. An object is identified by the set of all its properties.

An a ≡ b affirms that a and b are two names of a same object and thereby reciprocally
replaceable. Consequently an a ≡ b implies that a has also the possible meaning of b
(and vice versa).

A pairing of two names a and b is a third name (e.g. ab) that has both meanings
of the other two, therefore if a has a meaning then this is also of ab (and analogously
for b).

In identifying the members of an expression, each “≡” is considered, coherently with
the parentheses, at last (and analogously “≢”, “=”, “≠”). Is intended a⟨b⟩ ≡ ab, ∧ ≡
and ≡ “conjunction”, ∨ ≡ or ≡ “inclusive disjunction”, / ≡ xor ≡ “exclusive disjunction”.

The parentheses “{}” or “ ·̧ ” are used to delimit respectively a proposition generic
or that defines an event. Being P , Pa and Pb three propositions, is meant

{Pa ∥ Pb} ≡ “Pa subjected to the condition Pb” ≡ “Pa of which Pb” ≡ “Pa where Pb”

·P ¸ ≡ “P is true” ¬ ·P ¸ ≡ “P is false”
¬P ≡ “the proposition true if ¬ ·P ¸ and false if ·P ¸”

{Pa ≡ Pb} ≡ {¬Pa ≡ ¬Pb}

“Is implicit Pb” ≡ {Pa ≡ {Pa ∥ Pb} ;∀Pa} (1)

and P ⟨Pb¦Pa⟩ a set of propositions from which is logically deducible Pb being such
propositions all true except Pa that can be true or false.

Indicating → and ⇒ the two logical connectives called respectively entailment or log-
ical implication or logical consequence and material conditional or material implication
or material consequence, is placed

{Pa → Pb} ≡ {Pb ← Pa} ≡ ∃P ⟨Pb¦Pa⟩ ≡ “Pb is logically deducible from Pa” ≡
“an argumentation leads from Pa to Pb” ≡

“Pb is logically demonstrable starting from Pa” ≡
“Pb is a logical consequence of Pa”
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{Pa ↔ Pb} ≡ {Pa → Pb} ∧ {Pa ← Pb}
{Pa ⇒ Pb} ≡ {Pb ⇐ Pa} ≡ { ·Pa ¸ → ·Pb ¸}⇐ {Pa → Pb}

{Pa⇔ Pb} ≡ {Pa ⇒ Pb} ∧ {Pa ⇐ Pb} ≡ { ·Pa ¸ ↔ ·Pb ¸} ≡ {Pa ≡ Pb} (2)

A Pa ⇒ Pb is a P ⟨Pb¦Pa⟩ of which is considered conventionally only Pa, in the
sense that all its propositions certainly true (i.e. all except Pa) are implicitly treated
as such and are then contextually ignored as obvious. This highlights immediately
{Pa ⇒ Pb} ⇒ ∃P ⟨Pb¦Pa⟩. Moreover this identity of Pa ⇒ Pb and the always possi-
ble faculty of considering as said conventionally the only Pa of a P ⟨Pb¦Pa⟩ show also
∃P ⟨Pb¦Pa⟩ ⇒ {Pa ⇒ Pb}. Therefore is had Pa ⇒ Pb ≡ ∃P ⟨Pb¦Pa⟩. This and the said
Pa → Pb ≡ ∃P ⟨Pb¦Pa⟩ entail Pa ⇒ Pb ≡ Pa → Pb.

In conformity with the (2.1.1.1) of [1] is had

{Pa ⇒ Pb} ≡ {¬Pb ⇒ ¬Pa} ≡ “ ·Pa ¸ is sufficient for ·Pb ¸” ≡
“ ·Pb ¸ is necessary for ·Pa ¸” ≡ “ ·Pb ¸ if ·Pa ¸” ≡ “ ·Pa ¸ only if ·Pb ¸” ≡
{Pa ≡ {Pa ∥ Pb}} ≡ {Pb;∀Pa} ≡ ∃P ⟨Pb¦Pa⟩ ≡ “from Pa follows Pb” ≡

“Pa entails Pb” ≡ “Pa show Pb” ≡ “Pa gives rise to Pb” ≡ “Pa highlights Pb” ≡
“Pa implies Pb” ≡ “Pb is due to Pa” ≡ “Pb is obtainable from Pa” ≡

“Pb is a direct consequence of Pa”

(3)

whose

{Pa ⇒ Pb} ≡ “ ·Pa ¸ is sufficient for ·Pb ¸” ≡ “ ·Pb ¸ is necessary for ·Pa ¸”

is in [5], whose parentheses “ ·̧ ” can evidently be removed without risk of misun-
derstandings, and that, on the basis of Pa ⇒ Pb ≡ Pa → Pb, includes the tautology
Pa→Pb ≡ ¬Pb→¬Pa known as law of contraposition (a tautology is a proposition always
true anyway are changed its variable arguments).

The (3) and (2) give rise to

“Pa is necessary and sufficient for Pb” ≡ “Pa if and only if Pb” ≡
“Pa is equivalent to Pb” ≡ “Pa means Pb” ≡ {Pa ≡ Pb}

(4)

whose subscripts are exchangeable in each of the four members.
The (3) entails that Pa ⇒ Pb and ¬ ·Pb ¸ give rise to ¬ ·Pa ¸, and hence entails also the

kind of argumentation known as demonstratio per absurdum and consisting in the deduce

·Pa ¸ from ¬Pa ⇒ Pb and ¬ ·Pb ¸ or ¬ ·Pa ¸ from Pa ⇒ Pb and ¬ ·Pb ¸ (and consistent thus
ultimately in the establish false a Pa which implies a Pb false).

Is placed

{from: a1;a2; . . . ;aî; follows b0 ◇1 b1 ◇2 b2 ⋅ ⋅ ⋅ ◇̂i b̂i ◇̂i+1 b̂i+1 ⋅ ⋅ ⋅ ◇̂i+̂j bî+̂j} ≡

{a1 ⇒ {b0 ◇1 b1} ;a2 ⇒ {b1 ◇2 b2} ; . . . ;aî ⇒ {b̂i−1 ◇̂i b̂i}}

where: each of {◇1,◇2, . . . , ◇̂i+̂j} is a generally different relational symbol, as for ex-
ample one of {≡,≢,≠,⇒}; {◇̂i+1bî+1 ⋅ ⋅ ⋅ ◇̂i+̂j bî+̂j} may be absent and if is present the
validity of its presence is considered evident; each of {a1,a2, . . . ,aî} is replaced by
symbol “þ” when is considered evident the validity of the corresponding element of
{{b0 ◇1 b1} ,{b1 ◇2 b2} , . . . ,{bî−1 ◇̂i bî}}.

Is implicit

Æ⟨a // b // c⟩ ≡ “the being a a specification of b of which c”
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where “ // c” may be absent causing so the absence of “of which c”.
It is said that b is a specification of a for understand that b has all the properties of

a. So, on the base of paragraphs second, third and fourth of this section Preliminaries
of logic and set theory, ab is a specification of a if this name has a meaning. From: this;
(2.1.1.3) of [1]; follows

Æ⟨a // b⟩ ≡ {a ≡ {a ∧ b}} ≡ {a⇒ b} (5)

where is intended that a is a name which has a meaning.
In relation to the following concepts of set theory reference is made to [1, 3, 6–8]. Is

intended

{ai; i = 1, î} ≡ {a1,a2, . . . ,aî} ≡
î
⋀
i=1

ai

and so a sequence and a set, both made up of î elements, are respectively indicated
(ai; i = 1, î) and {ai; i = 1, î}, and they differ because in the second case it is irrelevant
to the order defined by {a < b} ≡ {aa precedes ab} and called sequential such as the one
typically own of every sequence. Therefore, a sequence is also a set but not vice versa.
Is indicated {a ∣ P} a set consisting of all the different specifications of a contextually
possible when there is the condition P . Is implicit {j = 1, î} ≡ {j; j = 1, î}.

Is meant N⟨A⟩ the numerosity of the set A i.e. the number of elements that constitute
A, E⟨A⟩ ≡ {ş ∥ ş ∈ A}, ¬A the set of elements that do not belong to A, ∅ the empty set
since N⟨∅⟩ = 0, ¬∅ the set constituted by each element.

The equality of the sets A and B is indicated A = B and affirms that every element of
A is also an element of B and vice versa. The addition of A and B is the set indicated
A+B and constituted by all the elements of A and all the elements of B. The intersection
of A and B is the set indicated A ∩ B and constituted by each element that belongs both
to A and B. The difference between A and B is the set indicated A − B and constituted
by each element of A that do not also belongs to B. The union of A and B is the set
indicated A ∪ B and constituted by each element that belongs to A but not to A ∩ B, or
to B but not to A ∩ B, or to A ∩ B. The Cartesian product of A and B is the set indicated
A× B and constituted by each different pair which can be made by choosing its elements
respectively belonging to A and B.

These definitions, intending A ≡ {Ah;h = 1, ĥ} and B ≡ {Bk;k = 1, k̂}, are specified by

{A = B} ≡ {iABh = 1;h = 1, ĥ} ∧ {iBAk = 1;k = 1, k̂}
A ∩ B ≡ {{Ah ∥ iABh = 1};h = 1, ĥ} A − B ≡ {{Ah ∥ iABh = 0};h = 1, ĥ}

A ∪ B ≡ {A + B} − {A ∩ B}

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭

(6)

whose {iABh;h = 1, ĥ} is determined by the following steps (and similarly {iBAk;k = 1, k̂}):

• it is placed {iABh = 0;h = 1, ĥ};
• they are carried out the N⟨B⟩ iterations indicated by {k = 1, k̂};
• at the k-th iteration is searched for a h ∈ {h = 1, ĥ} that verifies the {iABh = 0,Ah ≡ Bk}

and is placed iABh = 1 if there is a such {h ∈ {h = 1, ĥ} ∥ iABh = 0,Ah ≡ Bk}.

A A∩ B ≠ ∅ implies that at least one of the two sets {A, B} is the addition of a subset
whose elements are also elements of the other set and of another subset that does not
has this property. Being then such addition and A∩ B ≠ ∅ respective specifications of Pb
and Pa in (3), is had a demonstratio per absurdum of A∩B = ∅ if the addition in question
must be deemed to be false because it is unjustifiable the inherent distinction between
elements of a same set.
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Is had

{A ⊆ B} ≡ {A = A ∩ B} ≡ {B = A ∪ B} (7)

A permutation of n elements is one of their different n! possible sequences. Is
intended ◇î

i=1 şi ≡ ş1 ◇ ş2 ◇ . . . ş̂i and

{◇,◇} ≡ {∑,+} / {∏,×} / {⋀,∧} / {⋁,∨} / {⋂,∩} / {⋃,∪}

so ◇î
i=1 şi has the commutative property (i.e. ◇î

i=1 şi ≡◇î
i=1 şpi

with (pi; i = 1, î) any
one of the î! permutations of (i = 1, î)) and associative, with the exception of the case
{◇,◇} ≡ {∏,×} which has the only associativity if every şi is a set.

De Morgan’s laws in propositional logic and set theory are

¬
k̂
⋁
k=1

şk ≡
k̂
⋀
k=1

¬şk ¬
k̂
⋀
k=1

şk ≡
k̂
⋁
k=1

¬şk ¬
k̂
⋃
k=1

Ak ≡
k̂
⋂
k=1

¬Ak ¬
k̂
⋂
k=1

Ak ≡
k̂
⋃
k=1

¬Ak (8)

where {Ak;k = 1, k̂} are k̂ sets.
Is had

k̂
⋂
k=1

Ak ⊆
k̂
⋃
k=1

Ak ⋂
k̂
⋃
k=1

A ≡ A ⋂⋃ ≡⋂ / ⋃

Is intended ⊍k̂
k=1 Ak as a ⋃k̂

k=1 Ak of which

{Aa∩ Bb = ∅;∀{a, b} ⊆ {k = 1, k̂}},

so “
” and “⊍” are specifications of the respective “⋁” and “⋃”.
The Æ⟨/ // ∨⟩, (5) and the first two of (8) give rise to the first two of

¬
k̂
�
k=1

şk ⇒
k̂
⋀
k=1

¬şk
k̂
�
k=1

¬şk ⇒¬
k̂
⋀
k=1

şk ¬
k̂
⊍
k=1

Ak ⇒
k̂
⋂
k=1

¬Ak
k̂
⊍
k=1

¬Ak ⇒¬
k̂
⋂
k=1

Ak (9)

whose second two are deduced in the way obviously analogous. The ¬ş ≡ ş and ş ≡ ¬ş
highlight how, in each of (8) and (9), {ş,¬ş} can be substituted by {¬ş, ş}.

From: (7); {A = B} ≡ {¬A = ¬B}; fourth of (8); (7); follows

{A ⊆ B} ≡ {A = A ∩ B} ≡ {¬A = ¬{A ∩ B}} ≡ {¬A = {¬A ∪ ¬B}}≡ {¬B ⊆ ¬A} (10)

A univocal (i.e. non-injective and surjective) correspondence between A and B is a
set of NA pairs indicated A↠ B and defined by a A↠ B ≡ {Ah, Bkh

;h = 1, ĥ} of which

{kh ∈ {k = 1, k̂};h = 1, ĥ} {k ∈ {kh;h = 1, ĥ};k = 1, k̂}

Therefore a A ↠ B makes to correspond to each E⟨A⟩ a only E⟨B⟩ and in such A ↠ B

appear all the elements of A and B.
A bijection, i.e. a biunivocal correspondence, i.e. a one-to-one (injective) and onto

(surjective) correspondence, between A and B of which NA = NB, is a set of NA pairs
indicated A↠↞ B and defined by a

A↠↞ B ≡ {Ah, Bkh
;h = 1, ĥ} of which {kh;h = 1, ĥ} = {k = 1, k̂} .

Therefore a such A↠↞ B makes to correspond to each E⟨A⟩ a only E⟨B⟩ and vice versa.
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In the following are treated (with reference to [9,10]) dispositions, permutations and
combinations “simple” i.e. “without repetitions”. A disposition of class k of n objects
is a sequence of k elements of a set consisting of n elements, so two dispositions may
also differ only for the respective sequential orders. Instead a combination of class k of
n objects is a subset of numerosity k of a set of numerosity n, so the sequential order
of the elements of a combination is irrelevant as in the case of the sets. A disposition of
class n of n objects is called also permutation, and a disposition of class k of n objects
is also called permutation of n objects taken k at a time. The respective number of all
the possible different dispositions and combinations of class k of n objects is n!

(n−k)! and
(nk) with the second (the binomial coefficient) of which (nk) ≡

n!
k!(n−k)! .

Calling k
̃cba

the a-th element of the b-th different combination of class c of the
{k = 1, k̂}, is had

{{k
̃cba

;a = 1, c}; b = 1,(k̂
c
)}↠↞ {{k = 1, k̂} − {k

̃cba
;a = 1, c}; b = 1,(k̂

c
)} ≡

{{k
̃cba

;a = 1, k̂ − c}; b = 1,( k̂
k̂ − c
)}

(11)

The (2.2.36) and (2.2.37) of [1] affirm the respective

N⟨
k̂
⋃
k=1

Ak⟩ =
k̂
∑
c=1
(−1)c+1

(k̂
c
)

∑
b=1

N⟨
c

⋂
a=1

Ak
̃cba
⟩ N⟨

k̂
⊍
k=1

Ak⟩ =
k̂
∑
k=1

N⟨Ak⟩ (12)

The ⋃⋂k̂
k=1A ≡ A entails N⟨⋃⋂k̂

k=1A⟩ = NA which is coherent with the first of (12) and the
verify

k̂
∑
c=1
(−1)c+1

(k̂
c
)

∑
b=1

1 =
k̂
∑
c=1
(−1)c+1(k̂

c
) = 1

Inherently the ĥk̂ sets {Ahk;h = 1, ĥ;k = 1, k̂}, in section 2.2 of [1] is had

ĥ
⋂
h=1

k̂
∏
k=1

Ahk ⊇
k̂
∏
k=1

ĥ
⋂
h=1

Ahk

and (2.2.30) i.e.

¬∃
⎧⎪⎪⎨⎪⎪⎩

{ş ∣ ş ≡ ş; ş ∈ Aac} ≠ {ş ∣ ş ≡ ş; ş ∈ Abc} ;

ş ∈ Aac; ş ∈ Abc;{a, b} ⊆ {h = 1, ĥ} ;
c ∈ {k = 1, k̂}

⎫⎪⎪⎬⎪⎪⎭
⇒
⎧⎪⎪⎨⎪⎪⎩

ĥ
⋂
h=1

k̂
∏
k=1

Ahk =
k̂
∏
k=1

ĥ
⋂
h=1

Ahk

⎫⎪⎪⎬⎪⎪⎭
(13)

which both can result from computer verifications if each Ahk is a finite set, while (13)
can result by representing the products as rectangular parallelepipeds k̂-dimensional if
each Ahk is an interval of real numbers.

Events and Probability
For the following concepts of probability and statistics are referred [1,6,7,11–16]. This
section summarizes, simplifies and integrates the section 3 of [1] for present purposes.

An event E is biunivocally associated to its set of modalities M⟨E⟩ whose elements are
all the different modalities with which E can occur namely all the different possibilities
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that E has to happen. Is underlined the name of an event, with exclusion of subscripts,
superscripts and prefix “¬”, to indicate its set of modalities, in the sense of E ≡ME and
¬Ea ≡M⟨¬Ea⟩. The elements of E are modalities mutually exclusive of a single happening:
an E occur with (i.e. “as”) a only E⟨E⟩ that is indicated M⟨E⟩ and this property is called
“uniqueness of ME”. A E⟨E⟩ can be considered as a set of modalities which has an only
element and that is then own of the event constituted by the happening of such element.

The event ¬E happens if E does not happen but could have happened, E∅ is the event
impossible because E∅ = ∅ .

A name of an event also means its happen that in turn means its truth intended
as alternative to the falsity established by its not happen. Therefore is intended E ≡
“the happen of E” ≡ ·E ¸.

For two events A and B, is had {A = B} ≡ {A ≡ B}. An A ≢ B has like sufficient
condition the happen of A and B in different places or times and, if is due only to this
condition, A and B are two different happenings of the same event.

A A→ B affirms that the happen of A implies the happen of B and is a univocal cor-
respondence between A and a subset of B, constituted by pairs such that the properties
of first element are agree in asserting that its happen implies the happen of the second.
So A → B means that the happen of each E⟨A⟩ entails the happen of a only E⟨B⟩ being
such E⟨A⟩ and E⟨B⟩ the elements respectively first and second of one of said pairs, and
is had

{A→ B} ≡ {{A↠ b}→∥ b ⊆ B} (14)

where the subscript “→” indicates a univocal correspondence of the particular type just
said.

Generally a name of a proposition does not mean also the happening of the event
consisting in the being true such proposition. Instead a name of an event always means
also its happening and its “truth” in the sense of E ≡ “the happen of E” ≡ ·E ¸. Coher-
ently with this and Pa ⇒ Pb ≡ Pa → Pb, is implicit that Pa ⇒ Pb is specifiable as A → B.
Therefore in particular (5) entails A→ B ≡Æ⟨A // B⟩.

The (14) and A↔ B imply a1→ b and b→ a2 of which

a1 ∈ A, b ∈ B, a2 ∈ A, (and N⟨a1⟩ = N⟨b⟩ = N⟨a2⟩ = 1).

The uniqueness of MA and this be a2 implied by a1 show that a1 and a2 are a same
E⟨A⟩ i.e. a1 ≡ a2 ≡ MA, following so a {A↔ B} ≡ {A↠↞ B}↔ whose second member is a
bijection constituted by pairs such that the properties of both elements agree that the
happen of one implies the happen of the other.

The (7) highlights how A ⊆ B entails that A happen as a E⟨A ∩ B⟩, and so coherently
with second of (6) highlights the first two members of

{A ⊆ B}⇒ {MA ≡ {MA ∥MA ≡MB}}⇒ {A→ B} (15)

From: this; uniqueness of ME (for which ME is in both cases a same modality); (15)
and (2); follows

{A ⊆ E,B ⊆ E}⇒ {MA ≡ {MA ∥MA ≡ME},MB ≡ {MB ∥MB ≡ME}}⇒
{{A→ B}⇒ {A ⊆ B}} ≡ {{A→ B} ≡ {A ⊆ B}}

(16)

From (2) follows {A↔ B} ≡ {A ≡ B} which, for

{A ≡ B} ≡ {A = B} and {A↔ B} ≡ {A↠↞ B}↔,

gives rise to {A = B} ≡ {A↠↞ B}↔. This is confirmed by the first of (6) and by the said
properties of {A↠↞ B}↔ which allow to consider each pair as two names of the same
object.
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Is placed

B⟨E⟩ ≡ “E is a sure event” ≡ “E happens surely” ≡
“E is happened or will happen”⇒ “is known at least a definition of E”

(17)

and regarding its latest member is noted that ignore, voluntarily or involuntarily, an
event is a mere limitation of knowledge and not a logical error that could make the
results unreliable.

In relation to k̂ events {ek;k=1, k̂}, Ï⟨ek;k=1, k̂⟩ means that this events are indepen-
dent namely that the set of modalities of each of them not is modified by the happen
of any of the others.

On the basis of the first two members of (16) and uniqueness of ME, a {A ⊆ E,B ⊆ E}
implies that, if happens A, B can only happen with a M⟨B⟩ that verifies

MB ≡ {MB ∥MB ≡MA} , and hence is had {A ⊆ E,B ⊆ E}⇒ ¬Ï⟨A,B⟩ .

Is furthermore evident Ï⟨A,B⟩⇒ {Ï⟨a,b⟩ ∥ a ⊆ A,b ⊆ B}. Therefore is had

{B⟨E⟩ ∧ ∃{A ⊆ E,B ⊆ E ∥ {A,B} ⊆ {ek;k=1, k̂}}}⇒ ¬Ï⟨ek;k=1, k̂⟩

Ï⟨ek;k=1, k̂⟩⇒ {Ï⟨ek;k=1, k̂⟩ ∥ ek ⊆ ek;k=1, k̂} Ï⟨A,B⟩⇒ ¬{A→ B}
(18)

for which (based on (3)) a Ï⟨ek;k=1, k̂⟩ exists only if is ignored each E that makes true
the first member of the first of (18).

A A → B affirms, as said on the occasion of (14), that the happen of A implies the
happen of a only E⟨B⟩. This highlights {A→ B} ⇒ ¬Ï⟨A,B⟩ from which is deduced,
for (3),

Ï⟨A,B⟩⇒ ¬{A→ B} and Ï⟨A,B⟩⇒ ¬{B→ A} ,

and hence that the first member of (19) implies the second. Being also immediately
evident the reverse implication, is had

Ï⟨A,B⟩ ≡ ¬{A→ B} ∧ ¬{B→ A} (19)

Composite events
Are composite events E∩, E∪, E⊍, E∪∩, E∧ and E∨ of which

E∩ ≡
k̂
⋂
k=1

ek E∪ ≡
k̂
⋃
k=1

ek E⊍ ≡
k̂
⊍
k=1

ek ≡ {E∪ ∥ ea∩ eb = ∅;∀a ≢ b}

E∪∩ ≡ ⋂
k̂
⋃
k=1

ek E∧ ≡
k̂
⋀
k=1

ek E∨ ≡
k̂
⋁
k=1

ek

The E∩ and E∧ both mean the happen of all the elements of {ek;k=1, k̂}. The E∪

and E∨ both mean the happen of at least one of the elements of {ek;k=1, k̂}. However
these four events differ because their sets of modalities are

E∪∩ ≡ ⋂
k̂
⋃
k=1

ek E∧ ≡ {(ek;k=1, k̂) ∣ ek ∈ ek;k = 1, k̂}

E∨ ≡
⎧⎪⎪⎨⎪⎪⎩

k̂
⋁
k=1

ek ∣ ek ∈ ek;k = 1, k̂
⎫⎪⎪⎬⎪⎪⎭

(20)
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thus having, in particular and with reference to (17), B⟨E∧⟩ ≡ ⋀k̂
k=1 B⟨ek⟩.

An E∪∩, of which E∪∩ ≢ E∅, is defined only if ∃{E ∥ E ⊆ ek;k = 1, k̂}, because vice versa
the elements of E∪∩ would not be modalities mutually exclusive of a single happening
and would be contradicted the uniqueness of M⟨E∪∩⟩. An example of the absence of this
necessary condition is obtainable with e1 ≡ ⋀k̂

k=2 ek, when it (i.e. ∃{E ∥ E ⊆ ek;k = 1, k̂})
would not be prevented by {ek ∩ e1 ≡ E∅;k = 2, k̂} but by the fact that would imply
relations of type E⟨E⟩ ≡ E⟨e1⟩ ≡ E⟨¬ek⟩ with k ≠ 1 and so with a such E⟨E⟩ that it would
be impossible since e1 and ¬ek they cannot happen together.

The first of (20) entails ek ⊆ E∪∩ and so, based on first of (18), shows that only
consider E∪∩ gives anyway rise to ¬Ï⟨ek;k=1, k̂⟩.

The E⊍ ≡ ⊍k̂
k=1 ek (due to first of (20)) and uniqueness of each ME imply that {ek;k =

1, k̂} are mutually exclusive when is considered E⊍ and imply E∪ ≡ E⊍ of {ek;k = 1, k̂}
mutually exclusive.

From a E1, of which

E1 ≡ {ek ⊆ E,ek → a;k = 1, k̂} ,

is not immediately deducible E∪ → a, because to the properties of a E⟨ea⟩ that contribute
to determine a ea → a when it is not considered a eb, when instead is also considered
eb can be added other which contradict those said (this possibility will be highlighted
by the example in section A confirmation). So, having in each case E∩ → E∪ (due to
E∩⊆ E∪ and (15)) and intending

E2 ≡ ¬∃{e ∪ E∪≠ E∪ ∥ e→ a},

is had first of

{E1 ⇒ {E∩ → E∪ → a}}⇒ E3 {{E1,E2,B⟨E⟩}⇒ {E∪ ≡ a}}⇒ E3 (21)

where E3 (that is necessary analogously to Pb of (3)) consists in being the properties of
each E⟨E∪⟩, which are determined by the consider all the {ek;k=1, k̂}, all unanimous
in implying a E⟨a⟩, namely in being the names of each E⟨E∪⟩ coherent in determining
such implication; and it is also evident that the second follows from the first because in
this E∪ → a can be replaced by E∪ ≡ a if E2 prevents of increasing N⟨E∪⟩ and if B⟨E⟩.

The only E∧≡ ⋀k̂
k=1 ek makes to deduce, coherently to

N⟨
k̂
∏
k=1

ak⟩ =
k̂
∏
k=1

N⟨ak⟩

in (2.2.29) of [1],

Ï⟨ek;k = 1, k̂⟩ ≡
⎧⎪⎪⎨⎪⎪⎩
E∧=

k̂
∏
k=1

ek

⎫⎪⎪⎬⎪⎪⎭
≡
⎧⎪⎪⎨⎪⎪⎩
N⟨E∧⟩ =

k̂
∏
k=1

N⟨ek⟩
⎫⎪⎪⎬⎪⎪⎭

¬Ï⟨ek;k = 1, k̂⟩ ≡
⎧⎪⎪⎨⎪⎪⎩
E∧⊂

k̂
∏
k=1

ek

⎫⎪⎪⎬⎪⎪⎭
≡
⎧⎪⎪⎨⎪⎪⎩
N⟨E∧⟩ <

k̂
∏
k=1

N⟨ek⟩
⎫⎪⎪⎬⎪⎪⎭

(22)

as well as E∧⊆ C∧ of which C∧≡ ⋀k̂
k=1 Ck and {ek ⊆ Ck;k = 1, k̂}.

This E∧⊆ C∧ can be specified as Ẽ∧k ⊆ C∧ of which

Ẽ∧k ≡
k̂
⋀
k=1
ẽkk {ẽkk ≡ Ck;∀k ≠ k} ẽkk ≡ ek E∧⊆ Ẽ∧k
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The said meaning own of both the E∩ and E∧ entails that

k̂
⋂
k=1

Ẽ∧k is the happening of all the {ẽkk;k = 1, k̂;k = 1, k̂}.

The definition of ẽkk entails that this happen is that of all the {ek,Ck;k = 1, k̂} which, for
ek→ Ck (due to (15) and ek ⊆ Ck) and {ek → Ck} ≡ {ek ≡ {ek,Ck}} (affirmed by (2.1.1.3)
of [1]), is necessary and sufficient for the happen of E∧. Therefore is had ⋂k̂

k=1 Ẽ∧k ≡ E∧.
Substituting in this {ek;k = 1, k̂} with {¬ek;k = 1, k̂} is had

k̂
⋀
k=1

¬ek ≡
k̂
⋂
k=1

k̂
⋀
k=1
ẽ¬kk of which {ẽ¬kk ≡ Ck;∀k ≠ k}, ẽ¬kk ≡ ¬ek,

and so is had the first of

¬
k̂
⋀
k=1

¬ek ≡ ¬
k̂
⋂
k=1

k̂
⋀
k=1
ẽ¬kk E∨ ≡

k̂
⋃
k=1

¬
k̂
⋀
k=1
ẽ¬kk

whose second follows from first and (8), and whose ¬⋀k̂
k=1 ẽ

¬
kk, if B⟨C∧⟩ i.e. if C∧ is sure,

may be replaced by Ẽ∧k.
Therefore if B⟨C∧⟩ is had

E∧ ≡
k̂
⋂
k=1

Ẽ∧k ≡
k̂
⋂
k=1

k̂
⋀
k=1
ẽkk E∨ ≡

k̂
⋃
k=1

Ẽ∧k ≡
k̂
⋃
k=1

k̂
⋀
k=1
ẽkk (23)

of which E∧ ⊆ E∨ ⊆ C∧ (compliant to E∩ ⊆ E∪) and which allows to place each Ẽ∧k in a
space evidently analogous to a Cartesian space k̂-dimensional.

By specifying {ek;k = 1, k̂} as {Ck;k = 1, k̂} in (23), these become the first two of

C∧≡
k̂
⋂
k=1

C∧
k̂
⋁
k=1

Ck ≡
k̂
⋃
k=1

C∧
k̂
⋂
k=1

C∧≡
k̂
⋃
k=1

C∧≡ C∧

(whose third is due to ⋃⋂k̂
k=1A ≡ A) and which therefore show

k̂
⋁
k=1

Ck ≡ C∧ that is coherent with B⟨E∧⟩ ≡
k̂
⋀
k=1

B⟨ek⟩

in the sense that if B⟨E∧⟩ then each ek is implicitly present although not mentioned.

Probability
Are placed, coherently with (7), the first two of

ρ⟨A ¦B⟩ ≡ N⟨A ∩ B⟩
N⟨B⟩

{ρ⟨A ¦B⟩ = N⟨A⟩
N⟨B⟩

;∀A ⊆ B} ρ⟨A ¦B⟩ + ρ⟨¬A ¦B⟩ = 1 (24)

whose third is affirmed by the (3.2.1.2) of [1].
Is meant R ≡ (−∞,∞) with ∞ a number unlimitedly great. Coherently with (24)

and (4.2.2) of [1] is had

ρ⟨a ≤ s ≤ b ¦s ∈ R⟩ = N⟨M⟨a ≤ s ≤ b⟩⟩
N⟨M⟨s ∈ R⟩⟩

= ∫
b

a
D⟨s⟩(x)dx =

∫
b

−∞
Ds(x)dx − ∫

a

−∞
Ds(x)dx

(25)
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where s is a random variable and Ds(x) its probability density function (pdf). In such
Ds(x), x has also the identity of value of s and, calling R⟨g⟩ the set of different values
that can have a quantity g, is had R⟨x⟩ = R⟨s⟩.

From: (24), E∧⊆ C∧; Ï⟨ek;k = 1, k̂⟩, (22); (24), ek ⊆ Ck; follows the first member of

⎧⎪⎪⎨⎪⎪⎩
ρ⟨E∧¦C∧⟩ =

N⟨E∧⟩
N⟨C∧⟩

=
k̂
∏
k=1

N⟨ek⟩
N⟨Ck⟩

=
k̂
∏
k=1

ρ⟨ek ¦Ck⟩
⎫⎪⎪⎬⎪⎪⎭
⇐ Ï⟨ek;k = 1, k̂⟩ (26)

With reference to (17), is placed

C⟨E⟩ ≡ A⟨E⟩ ∧ B⟨E⟩ ∧ C⟨E⟩ A⟨E⟩ ≡ “E is identified univocally”

C⟨E⟩ ≡
⎧⎪⎪⎨⎪⎪⎩

“all the elements of E have the same potentiality
to be the modality with which happens E”

which makes evident

C⟨
k̂
⊍
k=1

ek⟩ ≡
k̂
�
k=1

C⟨ek⟩ , and for {Pa ∧ Pb}⇒ Pb

(tautology known as conjunction elimination), C⟨E⟩⇒ B⟨E⟩.
Calling P̃⟨A⟩ the probability of A, is had

C⟨B⟩⇒ {P̃⟨A⟩ ≡ P̃⟨A ∩ B⟩ = ρ⟨A ¦B⟩} P̃⟨A⟩ + P̃⟨¬A⟩ = 1 (27)

whose second follows from the definition of ¬E.
The A ⊆ B implies N⟨A ∩ C⟩ ≤ N⟨B ∩ C⟩. This and first of (27) give rise to the only

{C⟨C⟩,A ⊆ B}⇒ {P̃⟨A⟩ = ρ⟨A ¦C⟩ ≤ ρ⟨B ¦C⟩ = P̃⟨B⟩}

Nevertheless first of (27) and the only meaning of A→ B also allow

{C⟨C⟩,A→ B}⇒ {ρ⟨A ¦C⟩ = P̃⟨A⟩ ≤ P̃⟨B⟩} (28)

The (27) indicates that P̃⟨A⟩ does not have nature absolute and universal, but
relative and contingent as that of the inherent B. Indeed (27) makes possible all the
generally different P̃⟨A⟩ that correspond to the different choices of B, by following that
each of these probabilities has the eminently conventional nature of the being inherent
only the particular context determined by choice of corresponding B.

However, being evident that P̃⟨A⟩ is more significant if B represents better the
context in which are interesting information about A and in particular if subsists A ⊆ B
for which intervenes the entire A and not the only A ∩ B of the case A ≠ A ∩ B, is also
evident that a P̃⟨A⟩ can be considered as the only true and not merely conventional
probability of A, and in this case is indicated P⟨A⟩, if B is the event which has the lesser
N⟨B⟩ compatibly with A ⊆ B and

¬∃P AB ≢ {{¬B ⊆ ¬A}⇒ {E⟨¬B⟩ ≡ E⟨¬A⟩}} (29)

where P AB is a set of propositions from which is logically deducible E⟨¬B⟩ ≡ E⟨¬A⟩, with
¬B ⊆ ¬A that is deduced from A ⊆ B and (10), and being such (29) equivalent to the
absence of every relation that may be involved between A and ¬B by their respective
properties. Such evidence, i.e. the definition just said of P⟨A⟩, is based on the exclude
any modality that has no relation with A and vice versa in the include any modality
that has relation with A. Coherently with this, in (28) is had P̃⟨B⟩ ≡ P⟨B⟩ if no relation
between ¬C and B may be involved from their properties.
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An application of composite events
Is considered B⟨Q∧⟩ of which

Q∧ ≡
d̂
⋀
d=1
qd, qd ≡ pd ⊍ ¬pd, Ï⟨qd;d = 1, d̂⟩ , and the {qa ≢ qb;∀{a, b} ⊆ {d = 1, d̂}}

due to the sole fact that {d = 1, d̂} indicates d̂ several days i.e. with each qa ≢ qb caused
only by the happen qa and qb in the respective and different days a-th and b-th.

This implies both {qd;d = 1, d̂} as d̂ happenings of same q and {pd;d = 1, d̂} as d̂
happenings of same p, thus having also q ≡ p ⊍ ¬p.

Placing the

R∧kb ≡
d̂
⋀
d=1
rukbd {rukbd ≡ pukbd

;d = 1,k}

{rukbd ≡ ¬pukbd
;d = k + 1, d̂} {ukbd;d = 1, d̂} = {d = 1, d̂}

(30)

is had
{R∧kb ⊆ Q∧; b = 1,nR}

{R∧kb → Pk ≡ “in d̂ days happens k times p and d̂ − k times ¬p”; b = 1,nR}
(31)

whose R∧kb ⊆ Q∧ is due to rd ⊆ qd, and of which is had nR = d̂! as immediate consequence
of the being (ukbd;d = 1, d̂) a b-th permutation of {d = 1, d̂} affirmed by the last of (30).

Such nR = d̂! is confirmed by the evident possibility of placing nR = nRAnRB with nRA

the number of dispositions of class k of d̂ objects (i.e. nRA = d̂! /(d̂ − k)!) and nRB the
number of permutations of d̂ − k objects (i.e. nRB = (d̂ − k)!), or vice versa with nRA the
number of dispositions of class d̂ − k of d̂ objects (i.e. nRA = d̂! /k!) and nRB the number
of permutations of k objects (i.e. nRB = k!).

From:

Æ⟨BQ∧, (31) // first member of (21)⟩;

the mere hypothesize the possibility of cases such as {R∧ka ≡ R∧kb ∥ a ≢ b}, commutativity
and associativity of the union, {A ≡ B}⇒ {A⋃⋂B ≡ A}; follows

Pk ≡
nR

⋃
b=1

R∧kb ≡
nS

⋃
b=1

S∧kb ≡
nS

⊍
b=1

S∧kb (32)

of which {S∧kb; b = 1,nS} ⊆ {R∧kb; b = 1,nR} with nS the maximum compatible with

{S∧kr ≢ S∧ks;∀{r, s} ⊆ {b = 1,nS}},

and whose last member ⊍nS

b=1 S∧kb is due to mutual exclusivity of such {S∧kb; b = 1,nS}
which is substantially highlighted by the fact that each of these nS events is a specifica-
tion of Q∧ whose happen excludes that of any other.

From: last of (30); commutativity of ⋀î
i=1 şi, (4); follows

{{ukmd;d = 1,k} ≠ {uknd;d = 1,k}} ≡ {{ukmd;d = k + 1, d̂} ≠ {uknd;d = k + 1, d̂}} ≡

{R∧km ≢ R∧kn}

This and (11) give rise to

{S∧kb; b = 1,nS}↠↞ {{d̃kba
;a = 1,k}; b = 1,(d̂

k
)}↠↞ {{d

̃kba
;a = 1, d̂ − k}; b = 1,( d̂

d̂ − k
)}
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where d
̃kba

is the a-th element of the b-th combination of class k of the {d=1, d̂}, and of
which

{d
̃kba

;a = 1, d̂ − k} = {d = 1, d̂} − {d
̃kba

;a = 1,k}

So every S∧kb corresponds to a different combination of class k (and/or d̂ − k) of the
elements of {d=1, d̂} as is specified by

nS = (
d̂
k
) S∧kb ≡

k
⋀
a=1

pd
̃kba

∧
d̂−k
⋀
a=1

¬pd
̃kba

(33)

From:

Q∧ ≡
d̂
⋀
d=1
qd, Ï⟨qd;d = 1, d̂⟩ , (22);

N⟨qd⟩ = N⟨q⟩ due to being the {qd;d = 1, d̂} d̂ happenings of a same q; follows

N⟨Q∧⟩ =
d̂
∏
d=1

N⟨qd⟩ = (N⟨q⟩)
d̂

Besides Ï⟨qd;d = 1, d̂⟩, {pd ⊆ qd,¬pd ⊆ qd} (due to qd ≡ pd ⊍ ¬pd), and second of (18)
entail

Ï⟨{pd
̃kba

;a = 1,k} ,{¬pd
̃kba

;a = 1, d̂ − k}⟩

From: this, (22), second of (33); N⟨pd⟩ = N⟨p⟩ and N⟨¬pd⟩ = N⟨¬p⟩ due to being the
{pd;d = 1, d̂} d̂ happenings of a same p; follows

N⟨S∧kb⟩ =
k
∏
a=1

N⟨pd
̃kba
⟩
d̂−k
∏
a=1

N⟨¬pd
̃kba
⟩ = (N⟨p⟩)k(N⟨¬p⟩)d̂−k

From: S∧kb ⊆ Q∧ (due to {S∧kb; b = 1,nS} ⊆ {R∧kb; b = 1,nR} and R∧kb ⊆ Q∧), second
of (24); previous expressions of N⟨Q∧⟩ and N⟨S∧kb⟩; {p ⊆ q,¬p ⊆ q} (due to q ≡ p⊍¬p);
third of (24); follows

ρ⟨S∧kb ¦Q∧⟩ =
N⟨S∧kb⟩
N⟨Q∧⟩

= (N⟨p⟩
N⟨q⟩

)
k

(N⟨¬p⟩
N⟨q⟩

)
d̂−k

=

(ρ⟨p ¦q⟩)k(ρ⟨¬p ¦q⟩)d̂−k = (ρ⟨p ¦q⟩)k(1 − ρ⟨p ¦q⟩)d̂−k
(34)

From: (32); ρ⟨E⊍ ¦B⟩ = ∑k̂
k=1 ρ⟨ek ¦B⟩ affirmed by (3.2.1.11) of [1]; (34), first of (33);

follows

ρ⟨Pk ¦Q∧⟩ = ρ⟨
nS

⊍
b=1

S∧kb ¦Q∧⟩ =
nS

∑
b=1

ρ⟨S∧kb ¦Q∧⟩ = (
d̂
k
) (ρ⟨p ¦q⟩)k(1 − ρ⟨p ¦q⟩)d̂−k (35)

The (32) and S∧kb ⊆ Q∧ imply Pk ⊆ Q∧, and moreover the definition of Pk (in (31))
highlights

{Ph → P̃k ≡ “in d̂ days p happens at least k times”;h = k, d̂}
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From: this and BQ∧ , (21), {Pa∩ Pb = ∅;∀{a, b} ⊆ {h = k, d̂}}; þ; (35); follows

ρ⟨P̃k ¦Q∧⟩ = ρ⟨
d̂
⊍
h=k

Ph ¦Q∧⟩ =
d̂
∑
h=k

ρ⟨Ph ¦Q∧⟩ =
d̂
∑
h=k
(d̂
h
)(ρ⟨p ¦q⟩)h(1 − ρ⟨p ¦q⟩)d̂−h (36)

The first of (27) and last paragraph of section Probability give rise to

C⟨Q∧⟩⇒ {P⟨Pk⟩ = ρ⟨Pk ¦Q∧⟩, P⟨P̃k⟩ = ρ⟨P̃k ¦Q∧⟩}

which together with (35) and (36) expresses two important probabilities as a result of
the application of properties of composite events.

The Probability of an Unknown Constant
A g ∈ R, where g is a quantity, implies R ⊆ R and means that g has a value equal to
that of one of the elements of the set R. Intending that a subscript can also represent
a character string empty i.e. absent, is had

·g ∈ Rg ¸a ≡ ·g ∈ R ¸a ·g ∈ ¬Rg ¸a ≡ ·g ∈ ¬R ¸a ≡ E∅

Is considered implicit that a ·g ∈ R ¸a can happen only if B⟨ ·g ∈ R ¸a⟩ and so is had
¬ ·g ∈ R ¸a ≡ ·g ∈ R −R ¸a. Being evident the first of

{Ra ⊆ Rb} ≡ {M⟨ ·g ∈ Ra ¸a⟩ ⊆M⟨ ·g ∈ Rb ¸a⟩}

⋂
m̂
⋃
m=1

·g ∈ Rm ¸a ≡ ·g ∈ ⋂
m̂
⋃
m=1

Rm ¸a
(37)

the second of them is shown by the first of (20), uniqueness of ME (said in second
paragraph of section Events and Probability) and by the fact that a E⟨M⟨g ∈ R⟩⟩ regards
a only value of g.

From: A = {A ∩ B}∪{A ∩ ¬B} (in (2.2.23) of [1]); A∩B = A−¬B (in (2.2.7) of [1]); second
of (37);

·g ∈ ¬R ¸a ≡ E∅; ¬ ·g ∈ R ¸a ≡ ·g ∈ R −R ¸a;

follows

·g ∈ ¬R ¸a ≡ ·g ∈ {R ∩ ¬R} ∪ {¬R ∩ ¬R} ¸a ≡ ·g ∈ {R −R} ∪ {¬R ∩ ¬R} ¸a ≡

·g ∈ R −R ¸a ∪ · ·g ∈ ¬R ¸a ∩ ·g ∈ ¬R ¸a ¸ ≡ ·g ∈ R −R ¸a ≡ ¬ ·g ∈ R ¸a
The

·g ∈ ¬R ¸a ≡ ·g ∈ R −R ¸a

entails that in relation to a ·g ∈ ¬R ¸a is implied the conventional ¬R ≡ R − R. From:
this; R ⊆ R; follows

R ⊍ ¬R = R ⊍ {R −R} = R

How much a moment ago and second of (37) give rise to

B⟨ ·g ∈ R ¸a⟩⇒
⎧⎪⎪⎨⎪⎪⎩

·g ∈ R ¸a ≡ ·g ∈ R ¸a ⊍ ¬ ·g ∈ R ¸a,
¬ ·g ∈ R ¸a ≡ ·g ∈ ¬R ¸a,¬R ≡ R −R

⎫⎪⎪⎬⎪⎪⎭
(38)
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Is intended that X is an unknown constant and are placed its

e ≡ ·X ∈ R ¸ ē ≡ ·X ∈ R ¸

The being X a constant entails that ea not is the happening of one of the values of
X which are elements of R when ea would be an addition of subsets each corresponding
to a different E⟨R⟩, but it is instead the happening of a set R of which is element the only
value that can have X and concerning therefore each E⟨ea⟩ this same value. However
this neither influences the information expressed by ea on X nor prevents a Ï⟨ea,eb⟩.

The second of (37) entails

·

m̂
⋂
m=1

·g ∈ Rm ¸a ∥
m̂
⋂
m=1

Rm = ∅ ¸ ≡ ·g ∈ ∅ ¸a

whose second member is impossible (i.e. E∅) for which are considered impossible also
events such as its first member of which on the other hand is not definable any non-zero
probability.

Instead the events of type

·
m̂
⋀
m=1

·X ∈ Rm ¸m ∥
m̂
⋂
m=1

Rm = ∅ ¸,

even being able to calculate their nonzero probabilities, are however neglected as ren-
dered evidently impossible by the constancy of X and coherently with the ignore a
P̃⟨E⟩ > 0 of an E impossible i.e. the replace it with P̃⟨E⟩ = 0 because erroneously result-
ing by approximate knowledge of the hypothetical happen of E.

Is placed

{ēa∩ ēb ≠ ∅} ≡ {ēa∩ ēb = {ēa∨ ēb}} (39)

because, being evident that the second member implies the first, if this does not imply
the second is had an impossibility to justify such as that of last paragraph of page 4.

From: (39), (7); (8); follows

{ēa∩ ēb = ∅} ≡ ¬{{ēa ⊆ ēb} ∨ {ēb ⊆ ēa}} ≡ ¬{ēa ⊆ ēb} ∧ ¬{ēb ⊆ ēa} (40)

Is called I a set of which I ≡ {ēt; t = 1, t̂} and whose numerousness is maximum
subordinately to the condition

{ēa∩ ēb = ∅;∀{ēa,ēb} ⊆ I} (41)

which, together with (40), highlights that I can not have elements of type ⋃k̂
k=1 ēk and

⋂k̂
k=1 ēk because this would prevent that t̂ is a maximum.

Coherently with (41) and et ⊆ ēt (due to first of (37)), are introduced the events ē⊍
and e⊍ of which

M⟨e⊍⟩ ≡
t̂
⊍
t=1

et ⊆
t̂
⊍
t=1

ēt ≡M⟨ē⊍⟩ (42)

In conformity with paragraphs second and third of section Preliminaries of logic and
set theory, ē has the meaning implicated by ē ≡ ·X ∈ R ¸. This, on the basis of (5) and
the paragraph that introduces it, implies ēa→ ē.

The ē⊍ ≡ ⊍
t̂
t=1 ēt and ēa→ ē respectively give rise to the two members of each t-th

element of

{ēt ⊆ ē⊍,ēt → ē; t = 1, t̂}
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which specifies the E1 of (21).
It is understood B⟨ē⊍⟩ which excludes any ¬ēt ≡ ·X ∈ ¬R ¸t ≡ E∅ (vice versa implicated

by the ¬ ·g ∈ R ¸a ≡ ·g ∈ ¬R ¸a in (38) and B⟨ēt⟩), so is had the specification of the E3
of (21) consisting of being the properties of each E⟨ē⊍⟩ coherent in the imply a E⟨ē⟩.

From: this and second of (21); ¬∃Pa ≡ {¬Pa;∀a}; (7); follows

{ē ≡ ē⊍}⇐ {¬∃ē⊍ ∪ ēa ≠ ē⊍} ≡ {ē⊍ ∪ ēa = ē⊍;∀ēa} ≡ {ēa ⊆ ē⊍;∀ēa} (43)

of which

¬{ēa ⊆ ē⊍} ≡ Pa1 / Pa2 / Pa3

Pa1 ≡ {ē⊍ ⊂ ēa} Pa2 ≡ {ē⊍ ∩ ēa ⊂ ē⊍} ∧ {ē⊍ ∩ ēa ⊂ ēa} Pa3 ≡ {ē⊍ ∩ ēa = ∅}
(44)

The Pa1 and Pa2 are both false since each of them implies for each {ē⊍,ēa} an
impossibility to justify analogous to that of last paragraph of page 4. Also Pa3 is false
because it is incoherent with the definition of I i.e. with the be t̂ the maximum compatible
with (41). These falsities, first of (44) and (43) give rise to ē ≡ ē⊍. This and e ⊆ ē entail
e ⊆ ē⊍ for which e is constituted by all the elements of ē⊍ compatible with the meaning
of e and hence e ≡ e⊍.

From: ē ≡ ē⊍; first of (27); follows

C⟨ē⊍⟩ ≡ C⟨ē⟩⇒ {P̃⟨e⟩ = ρ⟨e ¦ē⟩} (45)

Is placed N⟨ēt⟩ =∞ on the basis of the unlimited greatness of N⟨R⟩ (and coherently
with section 4.1 of [1]).

From: second of (24), ea ⊆ ēa; ē ≡ ē⊍, e ≡ e⊍; second of (12); N⟨ēt⟩ = ∞; second
of (24), et ⊆ ēt; follows

ρ⟨e ¦ē⟩ = N⟨e⟩
N⟨ē⟩

=
N⟨

t̂
⊍
t=1

et⟩

N⟨
t̂
⊍
t=1

ēt⟩
=

t̂
∑
t=1

N⟨et⟩

t̂
∑
t=1

N⟨ēt⟩

= 1

t̂

t̂
∑
t=1

N⟨et⟩
N⟨ēt⟩

= 1

t̂

t̂
∑
t=1

ρ⟨et ¦ēt⟩ (46)

The above deducted

{ēa ⊆ ē⊍ = ē ⊇ e⊍ = e;∀ēa}

shows that in (45) ē⊍ can not be replaced by a B such that N⟨B⟩ < N⟨ē⊍⟩, e ⊆ B and of
which can not be deduced a E⟨¬B⟩ ≡ E⟨¬e⟩ without using

{¬B ⊆ ¬e}⇒ {E⟨¬B⟩ ≡ E⟨¬e⟩}

Therefore the P̃⟨e⟩ of (45) is, according to the last paragraph of section Probability,
the only true probability of e i.e. the P⟨e⟩. This, (45) and (46) give rise to

C⟨ē⊍⟩ ≡ C⟨ē⟩⇒
⎧⎪⎪⎨⎪⎪⎩
P⟨e⟩ = 1

t̂

t̂
∑
t=1

ρ⟨et ¦ēt⟩
⎫⎪⎪⎬⎪⎪⎭

(47)

From:

C⟨
k̂
⊍
k=1

ek⟩ ≡
k̂
�
k=1

C⟨ek⟩ , ē⊍ ≡
t̂
⊍
t=1

ēt; et → e; (28);
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follows

C⟨ē⊍⟩ ≡
t̂
�
t=1
C⟨ēt⟩ ≡

t̂
�
t=1
(et → e,C⟨ēt⟩)⇒

t̂
�
t=1
(ρ⟨et ¦ēt⟩ = P̃⟨et⟩ ≤ P̃⟨e⟩) (48)

which shows how in the absence of (47) would be impossible to have a practically
useful information on the probability of e, since they would exist only the following
two alternatives, replace P̃⟨e⟩ with a P̃⟨et⟩ or choose a P̃⟨et⟩ ≤ P̃⟨e⟩ and exclude all
remaining, that would involve however both a decision unjustifiably arbitrary.

From I ≡ {ēt; t = 1, t̂} is deducible (with any criterion) a I ≡ {ēmn;n = 1, n̂m;m = 1, m̂}.
From this is had, coherently with ē ≡ ē⊍, e ≡ e⊍ and (42),

{ēmn ⊆ ēm ⊆ ē, emn ⊆ em ⊆ e;n = 1, n̂m;m = 1, m̂}

defined by

ēm ≡
n̂m

⊍
n=1

ēmn ē ≡
m̂
⊍
m=1

ēm em ≡
n̂m

⊍
n=1

emn e ≡
m̂
⊍
m=1

em (49)

How N⟨ēt⟩ =∞ is had also N⟨ēmn⟩ =∞. From: first of (49); second of (12); N⟨ēmn⟩ =
∞; follows

N⟨ēm⟩ = N⟨
n̂m

⊍
n=1

ēmn⟩ =
n̂m

∑
n=1

N⟨ēmn⟩ = n̂m∞

From: (24), e ⊆ ē; (49); second of (12), N⟨ēmn⟩ =∞; (24), emn ⊆ ēmn, t̂ = ∑m̂
m=1 n̂m;

follows

ρ⟨e ¦ē⟩ = N⟨e⟩
N⟨ē⟩

=
N⟨

m̂
⊍
m=1

n̂m

⊍
n=1

emn⟩

N⟨
m̂
⊍
m=1

n̂m

⊍
n=1

ēmn⟩
=

m̂
∑
m=1

n̂m

∑
n=1

N⟨emn⟩
N⟨ēmn⟩

m̂
∑
m=1

n̂m

=

1

t̂

m̂
∑
m=1

n̂m

∑
n=1

ρ⟨emn ¦ēmn⟩ =
1

t̂

m̂
∑
m=1

n̂mρ⟨em ¦ēm⟩

(50)

whose last member is due to

ρ⟨em ¦ēm⟩ =
1

n̂m

n̂m

∑
n=1

ρ⟨emn ¦ēmn⟩

that is deduced in the evidently analogous way.
The (47), (46) and (50) entail

C⟨ē⊍⟩ ≡ C⟨ē⟩⇒ {P⟨e⟩ =
1

t̂

m̂
∑
m=1

n̂m

∑
n=1

ρ⟨emn ¦ēmn⟩ =
1

t̂

m̂
∑
m=1

n̂mρ⟨em ¦ēm⟩} (51)

Is intended {ēa,ēb} ⊆ I and hence {ēa ⊆ ē⊍, ēb ⊆ ē⊍} which coherently with first
of (18) gives rise to

B⟨ē⊍⟩⇒ ¬Ï⟨ēa,ēb⟩ which by (3) entails Ï⟨ēa,ēb⟩⇒ ¬B⟨ē⊍⟩ .

Moreover the having deduced ē ≡ ē⊍ implying B⟨ē⊍⟩ is equivalent, by (1), to

{ē ≡ ē⊍} ≡ {ē ≡ ē⊍ ∥ B⟨ē⊍⟩} which is equivalent, by (3), to ¬B⟨ē⊍⟩⇒ ¬{ē ≡ ē⊍} .
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This gives rise to Ï⟨ēa,ēb⟩ ⇒ {ē ≢ ē⊍} for which the elements of I are grouped on the
basis of mutual independence placing the

I ≡ {{ēmn;n = 1, n̂m;m = 1, m̂} ∥ ¬Ï⟨ēmh,ēmk⟩,{Ï⟨ēah,ēbk⟩;∀a ≠ b}} (52)

of which (52) ⇒ {ē ≢ ē⊍} whose second member is true only if is ignored ē⊍.
Therefore (52) (as also everything that is deduced from it) is in force only if ē ≢ ē⊍

i.e. is ignored ē⊍ i.e. are ignored second and last of (49) as well as the

{ēm⊆ ē,em ⊆ e;m = 1, m̂}

by them implicated.
The {Ï⟨ēah,ēbk⟩;∀a ≠ b} of (52) entails Ï⟨ēm;m = 1, m̂⟩ that by last of (18) and

em ⊆ ēm entails Ï⟨em;m = 1, m̂⟩.

A confirmation
The (23) has, coherently with (52), the specification

ë∧ ≡
m̂
⋀
m=1

ëm ≡
m̂
⋂
m=1

m̂
⋀
m=1

ë̃mm ë∨ ≡
m̂
⋁
m=1

ëm ≡
m̂
⋃
m=1

m̂
⋀
m=1

ë̃mm (53)

of which

ëm ≡ ·X ∈ Rm ¸m {ë̃mm ≡ ēm;∀m ≠m} ë̃mm ≡ ëm ë∧ ⊆ ë∨ ⊆ Ē

being in particular Ē, of which Ē ≡ ⋀m̂
m=1 ēm, the specification of C∧ and hence being

worth Ē ≡ ⋁m̂
m=1 ēm if B⟨Ē⟩ as it is understood in this section.

The evident

Ï⟨em;m = 1, m̂⟩⇒ Ï⟨ëm;m = 1, m̂⟩ and the said Ï⟨em;m = 1, m̂⟩

entail Ï⟨ëm;m = 1, m̂⟩. This and (26) imply

ρ⟨ë∧ ¦Ē⟩ = N⟨ë∧⟩
N⟨Ē⟩

=
m̂
∏
m=1

N⟨ëm⟩
N⟨ēm⟩

=
m̂
∏
m=1

ρ⟨ëm ¦ēm⟩ (54)

From: last of (24); first of (8); (54), ¬ëm ≡ ·X ∈ ¬Rm ¸m of which

¬Rm ≡ R −Rm (as can be deduced from B⟨Ē⟩ and (38));

follows

ρ⟨ë∨ ¦Ē⟩ = 1 − ρ⟨¬ë∨ ¦Ē⟩ = 1 − ρ⟨
m̂
⋀
m=1

¬ëm ¦Ē⟩ =

1 −
m̂
∏
m=1

ρ⟨¬ëm ¦ēm⟩ = 1 −
m̂
∏
m=1
(1 − ρ⟨ëm ¦ēm⟩)

(55)

From: second of (53);

ë∧ =
m̂
∏
m=1

ëm (due to Ï⟨ëm;m = 1, m̂⟩ and (22));
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(12), the being true the first member of (13) when the {Ahk;h = 1, ĥ;k = 1, k̂} are speci-
fied by {ë̃m

̃cbam;a = 1, c;m = 1, m̂};

N⟨
k̂
∏
k=1

Ak⟩ =
k̂
∏
k=1

N⟨Ak⟩ , {ë̃mm ≡ ēm;∀m ≠m} , ë̃mm ≡ ëm;

follows

N⟨ë∨⟩ = N⟨
m̂
⋃
m=1

M⟨
m̂
⋀
m=1

ë̃mm⟩⟩ = N⟨
m̂
⋃
m=1

m̂
∏
m=1

ë̃mm⟩ =

m̂
∑
c=1
(−1)c+1

(m̂
c
)

∑
b=1

N⟨
m̂
∏
m=1

c

⋂
a=1

ë̃m
̃cbam⟩ =

m̂
∑
c=1
(−1)c+1

(m̂
c
)

∑
b=1

c

∏
a=1

N⟨ëm
̃cba
⟩

m̂
∏

a=c+1
N⟨ēkcba

⟩

(56)

of which

{kcba;a = c + 1, m̂} = {m = 1, m̂} − {m
̃ cba;a = 1, c}

From: ë∨ ⊆ Ē, (24); (56), N⟨Ē⟩ = ∏m̂
m=1N⟨ēm⟩

(due to N⟨ë∧⟩ =
m̂
∏
m=1

N⟨ëm⟩ that is implied by Ï⟨em;m = 1, m̂⟩ and (22));

ëm ⊆ ēm, (24); follows

ρ⟨ë∨ ¦Ē⟩ = N⟨ë∨⟩
N⟨Ē⟩

=
m̂
∑
c=1
(−1)c+1

(m̂
c
)

∑
b=1

c

∏
a=1

N⟨ëm
̃cba
⟩

N⟨ēm
̃cba
⟩
=

m̂
∑
c=1
(−1)c+1

(m̂
c
)

∑
b=1

c

∏
a=1

ρ⟨ëm
̃cba

¦ēm
̃cba
⟩

(57)

It is remarkable the difference between (55) and (57) in expressing the same ρ⟨ë∨ ¦Ē⟩,
as well as the being the first numerically much more convenient because the second re-
quires a computation time that as m̂ increases soon becomes hardly available. Moreover,
intending ∪A ≡ ⋃k̂

k=1 Ak, the associative property of the union entails

∪A = {. . .{{A1 ∪ A2} ∪ A3} ∪ . . .Ak̂},

for which ∪A is the result of a succession of k̂ − 1 unions between two sets and hence
each of type A ∪ B of which, for first of (12),

N⟨A ∪ B⟩ = N⟨A⟩ +N⟨B⟩ −N⟨A ∩ B⟩ .

Therefore N⟨∪A⟩ can be defined iteratively, placing initially N⟨∪A⟩ = N⟨A1⟩ and then
executing the steps indicated by {k;k = 2, k̂} and constituted by the replace, at the k-th
step, N⟨∪A⟩ with

N⟨∪A⟩ +N⟨Ak⟩ −N⟨∪A ∩ Ak⟩ .

The evident analogy, between first of (12) (to which are alternatives the iterations
just said) and (57), makes to deduce, as alternative to this expression of ρ⟨ë∨ ¦Ē⟩, the
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following procedure: is placed P = ρ⟨ë1 ¦ē1⟩, are carried out the steps indicated by
{m = 2, m̂} and constituted by the replace P with

P + ρ⟨ëm ¦ēm⟩ − ρ⟨ëm ¦ēm⟩P

at step m-th, is placed ρ⟨ë∨ ¦Ē⟩ = P at the end of these steps. The computing time
required by this procedure is very near to that of (55).

A E⟨ë∧⟩ (as well as a E⟨ë∨⟩) is an m̂-tuple {E⟨ëm⟩;m = 1, m̂} element of Ē and then,
being X a constant (and neglecting as impossible any {ë∧ ∥ ⋂m̂

m=1Rm = ∅}), implies a
E⟨ë∩⟩ of which ë∩ ≡ ·X ∈ ⋂m̂

m=1Rm ¸. Therefore is had ë∧ → ë∩ that, for (28) and if C⟨Ē⟩,
gives rise to

ρ⟨ë∧ ¦Ē⟩ ≤ P̃⟨ë∩⟩ i.e. P̃⟨ë∩⟩ ∈ [ρ⟨ë∧ ¦Ē⟩ ,1].

As these are also ë∧p → ë∩ and P̃⟨ë∩⟩ ∈ [P∧p,1] of which

ë∧p ≡
m̂
⋀
m=1

ëmp, P∧p ≡ ρ⟨ë∧p ¦Ē⟩ , ëmp ≡ ·X ∈ Rµpm ¸m

with {µpm;m = 1, m̂} the p-th of the m̂! permutations of {m = 1, m̂}.
If the {ë∧p;p = 1, m̂!} could be concomitant (i.e. joined) and independent, as indi-

cated by
m̂!

⋀
p=1

ë∧p and Ï⟨ë∧p;p = 1, m̂!⟩ ,

then it could be considered ⋀m̂!
p=1(ë∧p → ë∩) which would allow to establish

ë∧p̂ → ë∩ of which p̂ ≡ {p ∥ P∧p =max(P∧p;p = 1, m̂!)}

and that on the basis of (28) would allow to deduce

C⟨Ē⟩⇒ {P̃⟨ë∩⟩ ∈ [ρ⟨ë∧p̂ ¦Ē⟩ ,1]} .

However B⟨Ē⟩, {ë∧p ⊆ Ē;p = 1, m̂!} and second of (20) imply that the said concomi-
tance not is representable by ⋀m̂!

p=1 ë∧p, but must instead be represented by ⋂m̂!
p=1 ë∧p.

Moreover B⟨Ē⟩, {ë∧p ⊆ Ē;p = 1, m̂!} and first of (18) imply ¬Ï⟨ë∧p;p = 1, m̂!⟩. Lastly, on
the base of (13) and second of (37), is deducible the equivalence between ⋂m̂!

p=1 ë∧p and
⋀m̂

m=1 ë∩m, and thus the concomitance in question is discretionally eliminable by means
of the reduce the complexity of the first to the only and mere second.

For these reasons is excluded⋀m̂!
p=1(ë∧p → ë∩) and is instead admitted 
m̂!

p=1(ë∧p → ë∩).
Hence, corresponding P̃⟨ë∩⟩ ∈ [P∧p,1] to each ë∧p → ë∩, is had

m̂!

�
p=1
P̃⟨ë∩⟩ ∈ [P∧p,1]

From: second of (9);

P̃⟨ë∩⟩ ∈ [0,1], P∧p ∈ [0,1];
k̂
⋀
k=1

B ∈ Ak ≡ B ∈
k̂
⋂
k=1

Ak;

follows
m̂!

�
p=1
P̃⟨ë∩⟩ ∈ [P∧p,1]⇒ ¬

m̂!

⋀
p=1

¬P̃⟨ë∩⟩ ∈ [P∧p,1] ≡ ¬
m̂!

⋀
p=1
P̃⟨ë∩⟩ ∈ [0,P∧p) ≡

¬P̃⟨ë∩⟩ ∈
m̂!

⋂
p=1
[0,P∧p) ≡ ¬P̃⟨ë∩⟩ ∈ [0,P∧p̌) ≡ P̃⟨ë∩⟩ ∈ [P∧p̌,1]

20/35



of which

p̌ ≡ {p ∥ P∧p =min(P∧p;p = 1, m̂!)}

Therefore in what follows it is implied that ë∧, in order to obtain P̃⟨ë∩⟩ ∈ [P∧p̌,1]
i.e. ρ⟨ë∧p̌ ¦Ē⟩ ≤ P̃⟨ë∩⟩, is replaced by ë∧p̌. Hence Æ⟨⋀m̂

m=1 ¬ëm //ë∧⟩ (for which is applied
to ⋀m̂

m=1 ¬ëm the replacement analogous to that just said for ë∧) and first of (8) imply
that ¬ë∨ is replaced by ¬ë∨p̂ of which

¬ë∨p ≡
m̂
⋀
m=1

¬ëmp, p̂ ≡ {p ∥ P¬∨p =min(P¬∨p;p = 1, m̂!)}, P¬∨p ≡ ρ⟨¬ë∨p ¦Ē⟩ ,

and therefore imply that ë∨ is replaced by ë∨p̂.
Coherently with last of (24) is had P∨p̂ = 1 − P¬∨p̂ of which

P∨p ≡ ρ⟨ë∨p ¦Ē⟩ , ë∨p ≡
m̂
⋁
m=1

ëmp.

This and the being P¬∨p̂ a minimum imply that P∨p̂ is a maximum and hence give rise to

p̂ ≡ {p ∥ P∨p =max(P∨p;p = 1, m̂!)}

In the same way from (24) and second of (8) follows P∧p̌ = 1 − P¬∧p̌ of which

P¬∧p ≡ ρ⟨¬ë∧p ¦Ē⟩ , ¬ë∧p ≡
m̂
⋁
m=1

¬ëmp.

This and the being P∧p̌ a minimum imply that P¬∧p̌ is a maximum and hence give rise to

p̌ ≡ {p ∥ P¬∧p =max(P¬∧p;p = 1, m̂!)}

The ë∧ ⊆ ë∨ (said in (53) occasion) entails P∧p̂ ≤ P∨p̂. This and the being P∧p̌ a
minimum entail P∧p̌ ≤ P∨p̂. This does not contradict the ë∧ ⊆ ë∨ that is had with the
said replacements of ë∧ with ë∧p̌ and ë∨ with ë∨p̂.

Being therefore conserved the properties of {ë∧,ë∨} by its implicit substitution with
{ë∧p̌,ë∨p̂}, (54) and (55) are replaced by

ρ⟨ë∧ ¦Ē⟩ =
m̂
∏
m=1

ρ⟨ ·X ∈ Rµp̌m ¸m ¦ēm⟩

ρ⟨ë∨ ¦Ē⟩ = 1 −
m̂
∏
m=1

ρ⟨ ·X ∈ ¬Rµp̂m ¸m ¦ēm⟩
(58)

where p̌ and p̂ are respectively a p that minimizes

m̂
∏
m=1

ρ⟨ ·X ∈ Rµpm ¸m ¦ēm⟩ and
m̂
∏
m=1

ρ⟨ ·X ∈ ¬Rµpm ¸m ¦ēm⟩ .

Is placed ë∪ ≡ ·X ∈ ⋃m̂
m=1Rm ¸. From: ¬ ·g ∈ R ¸a ≡ ·g ∈ ¬R ¸a in (38), (8); substitu-

tion of Rm with ¬Rm in ¬ë∩ → ¬ë∧ (due to ë∧ → ë∩ and (3)); (8); follows

ë∪ ≡ ¬ ·X ∈
m̂
⋂
m=1

¬Rm ¸ → ¬
m̂
⋀
m=1

¬ëm ≡ ë∨

The ë∪ → ë∨ is the (3.1.21) of [1] and is implied also by (3) and ¬ë∨ → ¬ë∪ which is
deduced analogously to ë∧ → ë∩.
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The
m̂
⋂
m=1

¬Rm ≠ ∅ of ¬
m̂
⋀
m=1

·X ∈ ¬Rm ¸m ≡ ë∨

(analogous to ⋂m̂
m=1Rm ≠ ∅ of ë∧) is equivalent, for (8), to the need to imply ⋃m̂

m=1Rm ≠
¬∅ inherent to ë∨, but this condition is obviously always obtained because ¬∅ is the
set that contains each set.

The name (and hence properties) of a E⟨ë∨⟩ is the addition of the names of the
elements of such m̂-tuple. The (53) show ë∨ = ë∧ + e such that an m̂-tuple E⟨e⟩ may
be contradictory because it can happen that some names of its m̂ elements affirm and
the remaining deny that X falls into a certain Rm. This entails that such E⟨e⟩ can not
imply a E⟨ë∪⟩, and then highlights the erroneousness of ë∨ → ë∪ which, on the basis
of (38), (8) and (3), would be tantamount to ë∩ → ë∧.

The {Ë∧k;k = 1, k̂}, of which

Ë∧k ≡
m̂
⋀
m=1

·X ∈ Rmk ¸m and
m̂
⋂
m=1

Rmk =
m̂
⋂
m=1

Rm,

verify, analogously to ë∧ of which are specifications, {Ë∧k ⊆ Ē,Ë∧k → ë∩;k = 1, k̂}. How-
ever is not accepted on the basis of (21) ∪Ë∧ → ë∩ (nor ∪Ë∧ ≡ ë∩) of which ∪Ë∧ ≡ ⋃k̂

k=1 Ë∧k,
because, being also E⟨∪Ë∧⟩ an m̂-tuple element of Ē, not subsists necessarily the inherent
specification of E3 that is the condition for which the properties of each E⟨∪Ë∧⟩, deter-
mined by considering all the {Ë∧k;k = 1, k̂}, they agree in implying a E⟨ë∩⟩. These ∪Ë∧ →
ë∩ and ∪Ë∧ ≡ ë∩ are not accepted also because for the {Ë∧k;k = 1, k̂} we have the evident
considerations analogous to those which above have induced to neglect ⋀m̂!

p=1 ë∧p and con-
sider 
m̂!

p=1 ë∧p. Furthermore the {Ë∧k → ë∩;k = 1, k̂} highlight that ë∧ → ë∩ and (21)
are not sufficient for ë∧ ≡ ë∩ since it is not obtainable true the specification of E2.

The ¬ë∨ → ¬ë∪ and (21) are not sufficient for ¬ë∨ ≡ ¬ë∪, since a single

m̂
⋀
m=1

ë̃
¬
mm → ¬ë∪ {ë̃

¬
mm ≡ ēm;∀m ≠m} ë̃

¬
mm ≡ ¬ë∪

is enough to prevent the specification of E2, noting in this regard also that a

¬ë∨ ∪
m̂
⋀
m=1

ë̃
¬
mm → ¬ë∪

is prevented by the absence of the specification of E3.
From ë∧ → ë∩ is deduced (for (28) and if C⟨Ē⟩) ρ⟨ë∧ ¦Ē⟩ ≤ P̃⟨ë∩⟩, but not is had an

analogous of (28) for deducing from ë∪ → ë∨ an upper bound of P̃⟨ë∪⟩. However even
this limitation can be achieved as follows. The ¬ë∨ → ¬ë∪ entails, for (28) and if C⟨Ē⟩,
ρ⟨¬ë∨ ¦Ē⟩ ≤ P̃⟨¬ë∪⟩. This, for last of (24), is equivalent to

1 − ρ⟨ë∨ ¦Ē⟩ ≤ 1 − P̃⟨ë∪⟩ that shows P̃⟨ë∪⟩ ≤ ρ⟨ë∨ ¦Ē⟩ .

Therefore they are had both the

ρ⟨ë∧ ¦Ē⟩ = 1 − ρ⟨¬ë∧ ¦Ē⟩ ≤ P̃⟨ë∩⟩ P̃⟨ë∪⟩ ≤ ρ⟨ë∨ ¦Ē⟩ = 1 − ρ⟨¬ë∨ ¦Ē⟩

Specifying in these ë∧ and ë∨ as the respective ë∧R and ë∨R of which

ë∧R ≡
m̂
⋀
m=1

·X ∈ Am ¸m
m̂
⋂
m=1

Am = R ë∨R ≡
m̂
⋁
m=1

·X ∈ Bm ¸m
m̂
⋃
m=1

Bm = R,
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the ë∩ and ë∪ are specified, on the basis of

e ≡ ·X ∈ R ¸ ≡ ·ë∩ ∥
m̂
⋂
m=1

Rm = R ¸ ≡ ·ë∪ ∥
m̂
⋃
m=1

Rm = R ¸,

both by e, following

ρ⟨ë∧R ¦Ē⟩ = 1 − ρ⟨¬ë∧R ¦Ē⟩ ≤ P̃⟨e⟩ ≤ ρ⟨ë∨R ¦Ē⟩ = 1 − ρ⟨¬ë∨R ¦Ē⟩ (59)

which has C⟨Ē⟩ as sufficient condition, of which by (8) is had

¬ë∧R ≡
m̂
⋁
m=1

·X ∈ ¬Am ¸m ¬ë∨R ≡
m̂
⋀
m=1

·X ∈ ¬Bm ¸m
m̂
⋃
m=1

¬Am =
m̂
⋂
m=1

¬Bm = ¬R,

and which results therefore coherent with (8.4) and (8.5) of [1] if is considered that in
how much moment ago the use of Am is equivalent to using ¬Am.

The ¬Ē ≡ ⋁m̂
m=1 ¬ēm and the fact that ¬ēm does not affect by no means X imply that

no relation between ¬Ē and e can be implicated from their properties. Therefore, on
the base of the last paragraph of section Probability and meaning

ρa = ρ⟨ë∧R ¦Ē⟩ and ρb = ρ⟨ë∨R ¦Ē⟩ ,

(59) can be written as ρa ≤ P⟨e⟩ ≤ ρb of which ρ̌a ≤ ρa ≤ ρ̂a and ρ̌b ≤ ρb ≤ ρ̂b, be-
cause ρa and ρb are variables dependent on choice of the respective {Am;m = 1, m̂} and
{Bm;m = 1, m̂} which moreover, as shown by

m̂
⋂
m=1

Am =
m̂
⋃
m=1

Bm = R,

are different in the sense that always verify

{Am;m = 1, m̂} ≢ {Bm;m = 1, m̂}

with the single exception of the case {Am = Bm = R;m = 1, m̂}.
The ρa = ρ⟨ë∧R ¦Ē⟩ and first of (58) entail

ρa =
m̂
∏
m=1

ρ⟨ ·X ∈ Aµq̌m ¸m ¦ēm⟩

where q̌ is a p that minimizes ∏m̂
m=1 ρ⟨ ·X ∈ Aµpm ¸m ¦ēm⟩. This,

m̂
⋂
m=1

Am = R, ρ⟨ëm ¦ēm⟩ =
N⟨ëm⟩
N⟨ēm⟩

(due to second of (24))

and the being N⟨ëm⟩ growing with the extension of Rm (due to first of (37)), ·X ∈ R ¸ ≡ e
and ·X ∈ R ¸ ≡ ē entail

ρ̌a = {
m̂
∏
m=1

ρ⟨ ·X ∈ Aµq̌m ¸m ¦ēm⟩∥ Am = R;m = 1, m̂} =
m̂
∏
m=1

ρ⟨em ¦ēm⟩

ρ̂a = {
m̂
∏
m=1

ρ⟨ ·X ∈ Aµq̌m ¸m ¦ēm⟩∥ {Am = R;∀m ≠ m̌},Am̌ = R} = ρ⟨em̌ ¦ēm̌⟩ (60)

of which

m̌ ≡ {m∥ρ⟨em ¦ēm⟩ =min(ρ⟨em ¦ēm⟩;m = 1, m̂)}
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The ρb = ρ⟨ë∨R ¦Ē⟩ and second of (58) entail

ρb = 1 −
m̂
∏
m=1

ρ⟨ ·X ∈ ¬Bµq̂m ¸m ¦ēm⟩

where q̂ is a p that minimizes ∏m̂
m=1 ρ⟨ ·X ∈ ¬Bµpm ¸m ¦ēm⟩. This, ⋂m̂

m=1 ¬Bm = ¬R and
last of (24) entail

ρ̌b = 1 − {
m̂
∏
m=1

ρ⟨ ·X ∈ ¬Bµq̂m ¸m ¦ēm⟩∥{¬Bm = R;∀m ≠ m̂},¬Bm̂ = ¬R} =

1 − ρ⟨¬em̂ ¦ēm̂⟩ = ρ⟨em̂ ¦ēm̂⟩
(61)

ρ̂b = 1 − {
m̂
∏
m=1

ρ⟨ ·X ∈ ¬Bµq̂m ¸m ¦ēm⟩∥¬Bm = ¬R;m = 1, m̂} =

1 −
m̂
∏
m=1

ρ⟨¬em ¦ēm⟩ = 1 −
m̂
∏
m=1
(1 − ρ⟨em ¦ēm⟩)

of which
m̂ ≡ {m∥ρ⟨¬em ¦ēm⟩ =min(ρ⟨¬em ¦ēm⟩;m = 1, m̂)} ≡

{m∥ρ⟨em ¦ēm⟩ =max(ρ⟨em ¦ēm⟩;m = 1, m̂)}

The ë∧ → ë∩ has the specification Ē → ē. The ¬Ē ≡ ⋁m̂
m=1 ¬ēm (that is had by (8))

and (14) show ¬∃{e ∪ Ē ≠ Ē ∥ e→ ē}. This and (21) give rise to ē ≡ Ē.
This,

C⟨Ē⟩⇒ {ρa ≤ P⟨e⟩ ≤ ρb}, ρ̌a ≤ ρa ≤ ρ̂a, ρ̌b ≤ ρb ≤ ρ̂b, (60) and (61)

entail

C⟨Ē⟩ ≡ C⟨ē⟩⇒ {ρ⟨em̌ ¦ēm̌⟩ ≤ P⟨e⟩ ≤ ρ⟨em̂ ¦ēm̂⟩} (62)

From: (52)⇒ {ē ≢ ē⊍} (and (3)); follows

{ē ≡ ē⊍}⇒ ¬(52)⇒ ¬{ē ≡ Ē}

that, by (3), implies

{ē ≡ ē⊍} ≡ {ē ≡ ē⊍ ∥ ē ≢ Ē} {ē ≡ Ē} ≡ {ē ≡ Ē ∥ ē ≢ ē⊍}

These respectively show that is had ē ≡ ē⊍ only if ē ≢ Ē (i.e. only if is ignored Ē) and
ē ≡ Ē only if ē ≢ ē⊍ (i.e. only if is ignored ē⊍). Nevertheless, as said in occasion of (17),
the ignore an event is not a logical error. Thus (51) and (62) are both valid and differ
only because deduced with different argumentations.

So ultimately, the appear in both the (51) and (62) the same true P⟨e⟩ and

K =

m̂
∑
m=1

n̂mK

m̂
∑
m=1

n̂m

imply
m̂
∑
m=1

n̂mρ⟨em̌ ¦ēm̌⟩ ≤
m̂
∑
m=1

n̂mρ⟨em ¦ēm⟩ ≤
m̂
∑
m=1

n̂mρ⟨em̂ ¦ēm̂⟩

which, being evidently true, confirms (51) inasmuch vice versa would be erroneous some
part of the previous argumentation and hence it could be erroneous also the same (51).
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The Calculation of a Confidence Interval
The set R, of which the e ≡ ·X ∈ R ¸ treated in section The Probability of an Unknown
Constant, has been defined by the only R ⊆ R, therefore is had R ≡ ⊍î

i=1 Ii of which
Ii ≡ [Ai,Bi] where “[Ai” and “Bi]” can be substituted by the respective “ − ∞” and
“∞”. Such R is a zone of the real line (an interval if î = 1) of confidence P⟨e⟩ (expressed
in (47)) for the unknown constant X.

The calculation of P⟨e⟩ can take place by means of (47) only if it is known every
ρ⟨et ¦ēt⟩ of which ēt ∈ I. In order to achieve this necessary condition it is sufficient to
know the functions

{at(A,B),bt(A,B),D⟨st⟩(x); t = 1, t̂} (63)

such as to verify

·A ≤ X ≤ B ¸ t ≡ ·at(A,B) ≤ st ≤ bt(A,B) ¸ ēt ≡ ·st ∈ R ¸ (64)

that, in conformity to (41) and (40), have as a necessary condition

{M⟨sa ∈ R⟩ /⊆M⟨sb ∈ R⟩;∀{(a,b) ∥ {a,b} ⊆ {t = 1, t̂}}} (65)

Indeed from: (24), et ⊆ ēt; R ≡ ⊍î
i=1 Ii, second of (37); first of (20), second of (12),

Ii ≡ [Ai,Bi]; (64); (25); follows (coherently with (4.2.19) of [1])

ρ⟨et ¦ēt⟩ =
N⟨et⟩
N⟨ēt⟩

=
N⟨M⟨

î
⊍
i=1

·X ∈ Ii ¸t⟩⟩

N⟨ēt⟩
=

î
∑
i=1

N⟨M⟨ ·Ai ≤ X ≤ Bi ¸t⟩⟩
N⟨ēt⟩

=

î
∑
i=1

N⟨M⟨at(Ai,Bi) ≤ st ≤ bt(Ai,Bi)⟩⟩
N⟨M⟨st ∈ R⟩⟩

=
î
∑
i=1

bt(Ai,Bi)

∫
at(Ai,Bi)

D⟨st⟩(x)dx

(66)

and thus (63) allows to know each ρ⟨et ¦ēt⟩ by means of (66).
This and the deduce ē⊍ ≡ ŝ⊍ of which ŝ⊍ ≡ ⊍t̂

t=1 ·st ∈ R ¸, from ē⊍ ≡ ⊍t̂
t=1 ēt (in (42))

and second of (64), allow to write (47) as

C⟨ŝ⊍⟩⇒
⎧⎪⎪⎪⎨⎪⎪⎪⎩
P⟨e⟩ = 1

t̂

t̂
∑
t=1

î
∑
i=1

bt(Ai,Bi)

∫
at(Ai,Bi)

D⟨st⟩(x)dx
⎫⎪⎪⎪⎬⎪⎪⎪⎭

(67)

for which is sufficient to know (63) of which (64) that is worth only if subsists (65).
The P⟨e⟩ is the true probability of e in front of its alternatives merely conventional,

but its calculation by means of (67), as is found at least in the cases considered, is
prevented by the excessive greatness of t̂ i.e. N⟨I ⟩, following that in practice (67) must
be used replacing its I with a conventional Ic of which Ic ⊂ I and then being able to
evaluate not P⟨e⟩ but an its conventional approximation P̃c⟨e⟩ that improves with
increasing of N⟨Ic⟩.

In what follows this substitution operative of I and P⟨e⟩ with Ic and P̃c⟨e⟩ is im-
plicit, noting in particular that, in this use of (67), the greatness of N⟨Ic⟩ and the treat
numbers floating point make convenient appropriate precautions as the Kahan summa-
tion algorithm which may be written as follows in a pseudolanguage derived from the
Visual Basic
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Funcion somma(ai; i = 1, î)
Dim s, c, t, y As Double
c = 0
s = 0
For i = 1 To î

y = ai − c
t = s + y
c = t − s − y
s = t

Next
Return s
End Function

with this Funcion that returns ∑î
i=1 ai.

For such a use of (67) specifically inherent the cases (of great importance in the
experimental sciences) that X is the mean or variance of a normal (i.e. Gaussian) ran-
dom variable, are below reported some pdf functions that specify the Ds(x) of (25)
and whose analytical deduction is referred in section 6 of [1]. In that regard is had
{D⟨a⟩ ≡ D⟨b⟩} ≡ {a ≡ b}.

A normal random variable g, with mean Mg and variance V2, and the standard normal
random variable Z have

D⟨g⟩(x) ≡ G⟨Mg, V2⟩(x) ≡
1√
2πV2

exp(−
(x − Mg)2

2V2
)

D⟨Z⟩(x) ≡ Z(x) ≡ G⟨0,1⟩(x) ≡ 1√
2π

℮− x2

2

of which R⟨g⟩ = R⟨Z⟩ = R, V > 0 and exp(ş) ≡ ℮ş (with ℮ the Napier’s or Euler’s
constant).

In relation to these g and Z is had

∫
b

a
G⟨Mg, V2⟩(x)dx =

b−Mg
V

∫
a−Mg

V

Z(x)dx

whose second member is calculable specifying the last equation of (25), using the relation
said in [17] between a ∫

c
−∞Z(x)dx and the incomplete gamma function, and calculating

this with the algorithm exposed in [18].
With reference to section 4.1 of [1], a sample X of a population X is random if each

E⟨X⟩ is determined when each E⟨X⟩ has the same probability to have such determination.
Is intended that Ï⟨x⟩, with x a set of k̂ quantities of which x ≡ {xk;k = 1, k̂}, means

that such quantities are independent i.e. that R⟨xk⟩ is not modified by any (k̂−1)-tuple
of values that can respectively have the remaining {{xk ∥ k ≠ k};k = 1, k̂}.

A S ≡ {Sk;k = 1, k̂}, of which D⟨Sk⟩ ≡ Ds, implies that S can be indifferently considered
a set of k̂ random variables that have as pdf the same Ds(x) or k̂ values of the same
S. And if in the second case is had Ï⟨S⟩, S becomes evident as a random sample of the
population of all values of S (which is obviously different from its subset R⟨S⟩).
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By placing

g ≡ {ga;a = 1, â} Ï⟨g⟩ D⟨ga⟩ ≡ G⟨Mg, V2⟩ m⟨g⟩ =

â
∑
a=1

ga

â
,

is had the random variable z of which

D⟨z⟩ ≡ Z z =
mg − Mg

V

√
â (68)

A χ2 (chi-square) random variable with ν degrees of freedom has

D⟨χ2⟩(x) ≡ X⟨ν⟩(x) ≡ x
ν
2 −1 ℮− x

2

2
ν
2 Γ(ν

2
)

with R⟨χ2⟩ = [0,∞), ν a natural number greater than 0, Γ(α) the gamma function
defined by

Γ(α) ≡ ∫
∞

0
tα−1 ℮−t dt and R⟨α⟩ = (0,∞).

In order to calculate a ∫
a
−∞Xν(x)dx (and make (25) useful as just said) is indicated the

algorithm in [17].
A T (Student’s t) random variable with ν degrees of freedom is defined by a

T = Z
¿
ÁÁÀχ2

ν

of which Ï⟨Z,χ2⟩

and has

D⟨T ⟩(x) ≡ T⟨ν⟩(x) ≡
Γ(ν + 1

2
)(1 + x2

ν
)
−ν+1

2

Γ(ν
2
)
√
πν

(69)

of which R⟨T ⟩ = R. To calculate a ∫
a
−∞Tν(x)dx is referred the algorithm in [17].

The number of all the different partitions of a set of k̂ elements is equal to the k̂-th
Bell number (of which [9, 10,19]) that is indicated B⟨k̂⟩. For the determination of such
partitions is referred the algorithm in [19].

Is placed g ≡ {ga;a = 1, â} of which â > 1, Ï⟨g⟩, D⟨ga⟩ ≡ G⟨Mg, V2⟩, thus is had
{g ≡ g} / {g ≢ g} and

{g = {gph;h = 1, ĥp};p = 1,Bâ} (70)

where {gph;h = 1, ĥp} is the p-th partition of g with gph ≡ {gphk;k = 1, k̂ph}, and of
which is placed ĥ1 = â, ĥBâ

= 1.
In this regard is had (coherently with (6.3.26) of [1])

D⟨
D2
p

V2
⟩ ≡ X⟨ĥp − 1⟩ D2

p =
ĥp

∑
h=1

k̂ph(mgph
−mg)2
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of which ĥp > 1 i.e. p < Bâ, and

D⟨
D2
p

V2
⟩ ≡ X Ň̂p

D2
p =

ĥp

∑
h=1

k̂ph

∑
k=1
(gphk −mgph

)2 Ň̂p =
ĥp

∑
h=1
(k̂ph − 1)

of which ĥp < â i.e. p > 1.
This is written

⎧⎪⎪⎨⎪⎪⎩
D⟨
D2
p

V2
⟩ ≡ X⟨ĥp − 1⟩,D⟨

D2
p

V2
⟩ ≡ X Ň̂p

;p = 2,Bâ − 1

⎫⎪⎪⎬⎪⎪⎭

D⟨D
2
1

V2
⟩ ≡ D⟨

D2
Bâ

V2
⟩ ≡

â

∑
a=1
(ga −mg)

2 ≡ X⟨â − 1⟩

i.e.
⎧⎪⎪⎨⎪⎪⎩
D⟨
D2
q

V2
⟩ ≡ Xνq; q = 1,2Bâ − 3

⎫⎪⎪⎬⎪⎪⎭
(71)

of which

{D2
1,ν1} ≡ {

â

∑
a=1
(ga −mg)

2
, â − 1} {{D2

q,νq} ≡ {D2
q, ĥq − 1}; q = 2,Bâ − 1}

{{D2
q,νq} ≡ {D2

pq
, Ň̂pq}; q = Bâ,2Bâ − 3} pq = q −Bâ+ 2

(72)

The mean of a normal random variable
From the previous definitions of random variables is deduced (with particular reference
to (69), (68) and (71))

D⟨tq⟩ ≡ Tνq tq =
√
νq

z
√

D2
q

V2

=
mg − Mg
wq

wq =

¿
ÁÁÀ D2

q

âνq
(73)

Is called G the set of all combinations of the elements of g and so is placed

G ≡ {Gu;u = 1, û} of which Gu ≡ {Gua;a = 1, âu} û =
â
∑
k=1
(â
k
)

Is called G the set of all combinations of class greater than 1 of the elements of g and
so is placed

G ≡ {Gu;u = 1, û} of which Gu ≡ {Gua;a = 1, âu} û =
â
∑
k=2
(â
k
) = û − â

As (70) is had also

{Gu = {Guph;h = 1, ĥup};p = 1,Bâu}

where {Guph;h = 1, ĥup} is the p-th partition of Gu with Guph ≡ {Guphk;k = 1, k̂uph}, and
of which is placed ĥu1 = âu, ĥuB⟨âu⟩ = 1.

The (73) remains valid also if its g and g are replaced by respective Gu and Gu of which
{Gu ≡ Gu}/{Gu ≢ Gu}. Such a substitution in (73) entails the replacement of {mg, â} with
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one of the {{mGu , âu};u = 1, û} and the replacement of {D2
q,νq} with a {D2

uq,νuq} where
u refers Gu and is had q ∈ {q = 1,2Bâu− 3} analogously to q ∈ {q = 1,2Bâ− 3} of (71).

Therefore the set of all these substitutions can be indicated

{{mGu, âu,D
2
uq,νuq}; q = 1, q̂u;u = 1, û;u = 1, û}

of which q̂u = 2Bâu− 3, and the (q,u,u)-th element of such set of ng substitutions, of
which

ng = 2û
û

∑
u=1
Bâu− 3ûû,

gives rise to

D⟨tuuq⟩ ≡ Tνuq tuuq =
mGu − Mg
wuuq

wuuq =

¿
ÁÁÀ D2

uq

νuq âu
(74)

of which is had, as (72),

{D2
u1,νu1} ≡ {

âu

∑
a=1
(Gua −mGu

)2, âu − 1}

{{D2
uq,νuq} ≡ {D2

uq, ĥuq − 1}; q = 2,Bâu− 1}

{{D2
uq,νuq} ≡ {D2

upuq
, Ň̂upuq}; q = Bâu,2Bâu− 3} puq = q −Bâu+ 2

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(75)

where

D2
uq =

ĥuq

∑
h=1

k̂uqh(mGuqh
−mGu

)2 D2
up =

ĥup

∑
h=1

k̂uph

∑
k=1
(Guphk −mGuph

)2 Ň̂up =
ĥup

∑
h=1
(k̂uph − 1)

The second of (74) entails that A ≤ Mg ≤ B is equivalent to

mGu −B ≤ tuuqwuuq ≤mGu − A

Therefore is had

·A ≤ Mg ≤ B ¸uuq ≡ ·αuuq(A,B) ≤ tuuq ≤ βuuq(A,B) ¸

·Mg ∈ R ¸uuq ≡ ·tuuq ∈ R ¸

(76)

of which

αuuq(A,B) ≡
mGu −B
wuuq

βuuq(A,B) ≡
mGu − A
wuuq

Placing A =mGu −K and B =mGu +K with K > 0, is had

αuuq(A,B) ≡ −
K
wuuq

βuuq(A,B) ≡
K
wuuq

This implies the

· ∣Mg −mGu
∣ ≤ K ¸ ≡ ·mGu −K ≤ Mg ≤mGu +K ¸ ≡ ·−

K
wuuq

≤ tuuq ≤
K
wuuq ¸ (77)

·mGu − wuuqK ≤ Mg ≤mGu + wuuqK ¸ ≡ ·−K ≤ tuuq ≤ K ¸ (78)

29/35



which, by means of (27), (25) and second of (76), allow respectively, when C⟨tuuq ∈ R⟩,
to calculate the probability of · ∣Mg −mGu

∣ ≤ K ¸ (where ∣Mg −mGu
∣ can be considered the

error that occurs in replacing Mg with mGu) and to determine an interval that contains
Mg with probability arbitrarily established through K.

Intending

Æ⟨vvz // uuq // {v ≠ u} ∨ {v ≠ u} ∨ {z ≠ q}⟩ ,

from: þ; (25); follows

{ ·tvvz ∈ R ¸ ≡ ·tuuq ∈ R ¸} ≡ { ·a ≤ tvvz ≤ b ¸ ≡ ·a ≤ tuuq ≤ b ¸}⇒

{∫
b

a
D⟨tvvz⟩(x)dx = ∫

b

a
D⟨tuuq⟩(x)dx}

but the last member of this is false and thus, by (3), is such also the first member. This
implies

M⟨tvvz ∈ R⟩ ∩M⟨tuuq ∈ R⟩ = ∅

because vice versa there would be an impossibility to justify such as that of last para-
graph of page 4, hence is had

¬{M⟨tvvz ∈ R⟩ ⊆M⟨tuuq ∈ R⟩} (79)

Is placed

T ≡
û
⊍
u=1

û

⊍
u=1

q̂u

⊍
q=1

·tuuq ∈ R ¸
The last two of (74) imply

·tuuq ∈ R ¸ ≡ ·mGu ∈ R ¸ ∧ ·D
2
uq ∈ [0,∞) ¸

These ·mGu ∈ R ¸ and ·D2
uq ∈ [0,∞) ¸ happen if are known g and g (i.e. are known their

â and â elements). Therefore this condition and the intention of consider with equal
probability one of the ng events that define T are sufficient for C⟨T⟩.

The

{αuuq(A,B),βuuq(A,B),D⟨tuuq⟩(x); q = 1, q̂u;u = 1, û;u = 1, û},

(76), (79) and Mg are specifications of (63), (64), (65) and X, following that (67) can,
coherently with the last two paragraphs of page 25, be specified by the second relation
of the

{g and g are known}⇒ C⟨T⟩⇒
⎧⎪⎪⎪⎨⎪⎪⎪⎩
P̃c⟨Mg ∈ R⟩ =

1

ng

û
∑
u=1

û

∑
u=1

q̂u

∑
q=1

î
∑
i=1

βuuq(Ai,Bi)

∫
αuuq(Ai,Bi)

Tνuq(x)dx
⎫⎪⎪⎪⎬⎪⎪⎪⎭

(80)

of which Æ⟨ng //N⟨Ic⟩⟩ and whose first relation is due to consider implicit the intention
said in the penultimate paragraph.

As (47) is related to (80), (48) is inherent to

{g and g are known}⇒ C⟨T⟩⇒
û
�
u=1

û

�
u=1

q̂u

�
q=1

ρ⟨ ·Mg ∈ R ¸uuq ¦ ·Mg ∈ R ¸uuq⟩ = P̃⟨ ·Mg ∈ R ¸uuq⟩ ≤ P̃⟨Mg ∈ R⟩
(81)
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where each P̃⟨ ·Mg ∈ R ¸uuq⟩ is known and which shows as, in absence of (80), it would
only possible replace P̃⟨Mg ∈ R⟩ with a P̃⟨ ·Mg ∈ R ¸uuq⟩ or choose a

P̃⟨ ·Mg ∈ R ¸uuq⟩ ≤ P̃⟨Mg ∈ R⟩

among the many, but, so, having to make, in both cases, a choice unjustifiable.
Indeed such a choose might follow from considering that (75) shows that

Gu ≡ g {D2
uq,νuq} ≡ {

â

∑
a=1
(ga −mg)2, â − 1} (82)

entails a greater νuq âu, and that third of (74) and (76) show that a greater νuq âu implies
generally a greater P̃⟨ ·A ≤ Mg ≤ B ¸uuq⟩. However a probability is not more reliable just
because is greater and thus there is no reason to prefer the P̃⟨ ·A ≤ Mg ≤ B ¸uuq⟩ identified
by (82).

Instead (75) and third of (74) show (82) convenient when is not about choose (as
just said) between several probability of a same event, but between the events defined
by (77) and (78), since it is clear that (82) generally in these cases entails respectively
the greater P̃⟨∣Mg −mGu

∣ ≤ K⟩ and the smaller interval between those which have equal
probability of containing Mg. This is confirmed by the law of large numbers (of which
also in section 5.3.1 of [1]) that affirms

lim
â→∞

P̃⟨∣mg − Mg∣ > 0⟩ = 0

for which generally the increase of â entails a mg more approximate to Mg and thus a
greater P̃⟨∣Mg −mGu

∣ ≤ K⟩.
Intending

{şn;n = 1,ng} ≡ {şuuq; q = 1, q̂u;u = 1, û;u = 1, û} ,

for a l-th linear combination Tl of {tn;n = 1,ng}, defined by non negative arbitrary
constants {λln;n = 1,ng}, is had

Tl ≡
ng

∑
n=1

λlntn = hl − klMg hl ≡
ng

∑
n=1

λlnmGn

wn
kl ≡

ng

∑
n=1

λln

wn

A linear combination of random variables is a further random variable whose pdf is
always calculable with general methods like those of section 5.2 of [1] or more efficiently
with methods which are specific to the given random variables. Is deduced

·A ≤ Mg ≤ B ¸l ≡ ·hl − klB ≤ Tl ≤ hl − klA ¸

and hence relations analogous to (76). Moreover for two random variables Ta and Tb,
also they linear combinations as Tl, is deduced a relation analogous to (79). Finally what
has been just said can be reiterated adding variables of type Tl to variables of which
are considered the linear combinations. It is therefore evident how, without having to
consider other variables, the number of variables of (80) (i.e. the specification of N⟨Ic⟩)
can be increased unlimitedly, following evident also the necessity (said in the last two
paragraphs of page 25) of replace the true P⟨Mg ∈ R⟩ with a probability conventional as
the P̃c⟨Mg ∈ R⟩ of (80).

The numerosity of population of all values of g is unlimited in consequence (with
reference to section 4 of [1]) of the continuity of Dg, following that is unlimited also
the number of samples of such population. This and the being g one of these samples
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imply that is unlimited the number of cases as (76) and among which there are relations
as (79). Is therefore evident an other reason which makes unlimited the numerosity of
the present specification of I and that makes of consequence necessary the substitution
of P⟨Mg ∈ R⟩ with a probability conventional.

Coherently with what just said, generally (80) makes a better approximation of
P⟨Mg ∈ R⟩ if has a greater Ng that implies a greater ng (of which Æ⟨ng //N⟨Ic⟩⟩) and
thus a better substitution of type said in the last two paragraphs of page 25.

Concluding this section is noted incidentally that a ≠ b (which implies Ga ≢ Gb)
and E⟨Gu⟩ ∈ R (due to Ïg) show Ï⟨mGa ,mGb

⟩ and thus Ï⟨tacd,tbcd⟩, and that instead
R⟨wuuq⟩ = [0,∞) shows that from tuuq ≥ 0 follows tuef ≥ 0, following ¬Ï⟨tuuq,tuef⟩
because R⟨tuef⟩ = R.

The variance of a normal random variable
In relation to

ģ ≡ {ģa;a = 1, à} Ï⟨ģ⟩ D⟨ģa⟩ ≡ G⟨Mģ, V2ģ⟩ ģ ≡ {ģa;a = 1,à} Ï⟨ģ⟩ D⟨ģa⟩ ≡ G⟨Mģ, V2ģ⟩ ,

is had, coherently with (6.2.29) of [1],

Ï⟨m⟨ģ⟩ ,m⟨ģ⟩⟩⇒

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

D⟨
mģ −mģ + Mģ − Mģ¿
ÁÁÀV2ģ

à
+
V2ģ
à

⟩ = Z

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭

This, considering that in relation to G ≡ {Gu;u = 1, û} of previous section is had

Ï⟨Gu⟩ (due to Ïg), D⟨E⟨Gu⟩⟩ ≡ G⟨Mg, V2⟩ and Ï⟨mGa ,mGb
⟩ ,

implies

D⟨
mGa −mGb√

V2

âa
+ V2

âb

⟩ = Z

This,

{Ds ≡ Z} ≡ {s ≡ Z} and D⟨Z2⟩(x) = x−
1
2Z(x

1
2 ) (of which R⟨Z2⟩ = [0,∞))

affirmed by (6.2.7) of [1], give rise to

D⟨z2
ab⟩(x) = x−

1
2Z(x

1
2 ) ≡ X1(x) z2

ab =
y2
ab
V2

y2
ab =

(mGa −mGb)
2

â−1a + â−1b

whose second entails that A ≤ V2 ≤ B (of which A ≥ 0) equates to y2
ab/B ≤ z2

ab ≤ y2
ab/A.

Therefore is had

·A ≤ V2 ≤ B ¸ab ≡ ·

y2
ab
B
≤ z2

ab ≤
y2
ab
A ¸ ·V

2 ∈ [0,∞) ¸ab ≡ ·z
2
ab ∈ [0,∞) ¸ (83)

of which

{a,b} ∈ {{a,b};b = a + 1, û;a = 1, û − 1}
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(with û = ∑â
k=1 (

â
k
), â = N⟨g⟩ as in previous section) because {a,b} is one of the (û

2
)

combinations of class 2 of {u = 1, û}.
From

Æ⟨{D2
uq,νuq}, (75) // {D2

q,νq}, (72) // (71)⟩

is deduced

D⟨z2
uq⟩ ≡ Xνuq z2

uq =
D2
uq

V2

whose second gives rise to

·A ≤ V2 ≤ B ¸uq ≡ ·

D2
uq

B
≤ z2

uq ≤
D2
uq

A ¸ ·V2 ∈ [0,∞) ¸v ≡ ·z
2
uv ∈ [0,∞) ¸ (84)

of which

{u, q} ∈ {{u, q}; q = 1, q̂u;u = 1, û}

with q̂u and û expressible as said in previous section and being therefore {u, q} element
of a set of numerosity ng/û.

The (83) and (84) give rise to

·A ≤ V2 ≤ B ¸v ≡ ·αv(A,B) ≤ r
2
v ≤ βv(A,B) ¸

·V2 ∈ [0,∞) ¸v ≡ ·r
2
v ∈ [0,∞) ¸

(85)

of which

αv(A,B) ≡
ψ2
v
B
, βv(A,B) ≡

ψ2
v
A
,

{r2
v,ψ

2
v;v = 1, v̂} ≡ {{z2

ab,y
2
ab;b = a + 1, û;a = 1, û − 1},{z2

uq,D
2
uq; q = 1, q̂u;u = 1, û}}

with v̂ = (û
2
) + ng/û. This allows for V2 results analogous to those obtained for Mg at

second paragraph of page 30.
As (79) is deduced also

{¬{M⟨r2
a ∈ R⟩ ⊆M⟨r2

b ∈ R⟩};∀a ≠ b} (86)

Is placed

R ≡
v̂
⊍
v=1

·r2
v ∈ [0,∞) ¸

As for C⟨T⟩ in (80), also for C⟨R⟩ are deduced sufficient the knowledge of g and g, and
the intention of consider with equal probability one of the v̂ events which define R.

The {αv(A,B),βv(A,B),D⟨r2
v⟩(x);v = 1, v̂}, (85), (86) and V2 are specifications of

(63), (64), (65) and X, following that (67) can, coherently with the last two paragraphs
of page 25, be specified by the second relation of

{g and g are known}⇒ C⟨R⟩⇒
⎧⎪⎪⎪⎨⎪⎪⎪⎩
P̃c⟨V

2 ∈ R⟩ = 1

v̂
v̂
∑
v=1

î
∑
i=1

βv(Ai,Bi)

∫
αv(Ai,Bi)

D⟨r2
v⟩(x)dx

⎫⎪⎪⎪⎬⎪⎪⎪⎭
(87)
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of which R ⊆ [0,∞) because D⟨r2
v⟩(x) is not defined for x ∉ [0,∞), and whose first

relation is due to the just said intention.
As (47) is related to (87), (48) is inherent to

{g and g are known}⇒ C⟨R⟩⇒
v̂
�
v=1
(P̃⟨ ·V2 ∈ R ¸v⟩ ≤ P̃⟨V

2 ∈ R⟩) (88)

where each P̃⟨ ·V2 ∈ R ¸v⟩ is knowable and which shows as, in absence of (87), it would
only possible replace P̃⟨V2 ∈ R⟩ with a P̃⟨ ·V2 ∈ R ¸v⟩ or choose a P̃⟨ ·V2 ∈ R ¸v⟩ ≤ P̃⟨V2 ∈ R⟩
among the many, but, so, having to make, in both cases, a choice unjustifiable. Indeed
also in this case a P̃⟨ ·V2 ∈ R ¸v⟩ would not be made more reliable from the being gener-
ally greater.

For a l-th linear combination R2l of {r2
v;v = 1, v̂} defined by non negative arbitrary

constants {λlv;v = 1, v̂}, is had

R2l ≡
v̂
∑
v=1

λlvr2
v =

h2l
V2

h2l ≡
v̂
∑
v=1

λlvψ2
v ·A ≤ V2 ≤ B ¸l ≡ ·

h2l
B
≤ R2l ≤

h2l
A ¸

Hence also in this case, as at last paragraph of page 31, are deduced the possibility of
increase unlimitedly the number of variables of (87) and the following necessity of replace
P⟨V2 ∈ R⟩ with a probability conventional as the P̃c⟨V2 ∈ R⟩ of (87). In this regard are
immediate the further considerations analogous to those of the previous section and in
particular how a greater Ng entails generally a better approximation of P⟨V2 ∈ R⟩.

Conclusions
The utility of a probability consists ultimately in the being a measure of the possibility
of happen an event and is obviously prevented when coexist different probabilities of a
same event among which is not possible identify one as the only totally reliable.

A such impediment is typical in treating a confidence interval, as ascertained in the
two previous sections where is clear that, in absence of (80) and (87), there would be,
in both cases and coherently with (81) and (88), a number unlimited of different and
equally reliable confidences, i.e. probabilities, of a same event.

However in the usual treatments these difficulties are irrelevant because, among many
equally reliable and generally different confidences, are considered only those deducible
by the whole sample and is chosen one of these arbitrarily or because it is the only
contingently calculable. At this regard is noted that the (8.5) of [1] does not constitute
a definitive progress because of its character substantially conventional.

In consequence of this the essential purpose of this work has been contextualize and
circumstantiate concepts and procedures with which to define and calculate a confidence
as the only totally reliable.

This aim has been achieved satisfyingly, because has been reached the (47) (i.e. (67))
where, as said in the last two paragraphs of page 25, the searched confidence is expressed
so that it, although not exactly calculable, is however unlimitedly approximable.
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