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Abstract

A differential analytical model is a system of so many PDEs in the same (or
lesser) number of unknown functions where each PDE is of any order and can be
nonlinear. Usually the operative interest of such a model is to determine an its
solution when is subject to additional conditions like those boundary or initial.

This work exposes the mathematical basis of a program (freeware in http://
www.giacomo.lorenzoni.name/peei/ ) to numerically solve every differential ana-
lytical model with every set of additional conditions. In particular is exposed
what follows.

Are described the analytical properties of two well known models to ap-
proximate a function: the interpolating polynomial and the cubic spline. The
values of a natural cubic spline and of its derivatives, in the interpolation nodes,
are expressed as linear combinations of the known values of the function to be
interpolated and whose coefficients depend only on the nodes. Are obtained new
bounds for the errors of a cubic spline. Are presented essential aspects of a curve
in a multidimensional Euclidean space, in order to obtain an upper bound for
the absolute maximum value of a derivative defined on a curve. Is shown the
expression of a partial derivative as a linear combination of directional deriva-
tives and is deduced its optimal approximation. Is formulated the expression
of the generic differential analytical model, is identified the main impediment
to knowledge of an its exact solution in not knowing its partial derivatives, is
circumstantiated the context of information contingently available and is showed
how, solving an inherent system of nonlinear equations, can be calculated an
its numerical solution. Is exposed an original algorithm that, in this system
of nonlinear equations, expresses a derivative as a linear combination of unknowns.

Key words: numerical solution of PDEs systems, differential analytical models,
numerical differentiation, splines, graph algorithms, interpolation
MSC: 35G61, 65M22, 65D25, 65D07, 05C85, 65D05

1

http://orcid.org/0000-0002-2329-2881
mailto:info@giacomo.lorenzoni.name
mailto:info@pec.giacomo.lorenzoni.name
http://www.giacomo.lorenzoni.name/peei/
http://www.giacomo.lorenzoni.name/peei/


Contents

1 Introduction 2

2 Two models for approximate a function: the interpolating polyno-
mial and the cubic spline. 4
2.1 The interpolating polynomial . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 The cubic spline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3 New bounds for the errors of a cubic spline . . . . . . . . . . . . . . . . . 9

3 The maximum absolute value of a derivative defined on a curve of
the multidimensional Euclidean space 16

4 The approximation of a linear combination of directional derivatives
that expresses a partial derivative at a intersection of some curves 19

5 The formulation of a differential analytical model and its numerical
solution as the unknowns of a total system 21

6 The approximation of a derivative of the total system with a linear
combination of local values of the function to be derived 23
6.1 The set of rectilinear segments . . . . . . . . . . . . . . . . . . . . . . . . . 23
6.2 An original algorithm that expresses, by means of a tree graph, the

linear combination that approximates a derivative of the total system. . 25

7 Conclusion 28

1 Introduction

This paper concerns the generic differential analytical model M, intended as a
system of so many equations in the same or lesser number of unknowns where each
equation is a PDE (partial differential equation) of any order and generally nonlinear,
and where the unknowns are functions of same independent variables.

The unknown functions of M are its exact solution. A discrete solution of M is
constituted by a limited number of values that its unknown functions assume in their
domain of definition. A numerical solution is an approximation of a discrete solution.

In relation toM, usually is had the operating purpose of determine an its numerical
solution when it is specifically subjected to additional conditions such as those initial
or boundary. So in particular the objective of what follows is to determine a numerical
solution of M when is subject to any set of additional conditions.

The symbology of a technical writing aims to make the comprehension univocal
and shorten the exposure. Therefore, with reference to section 2 of [1] (this work is
also available at http://www.giacomo.lorenzoni.name/arganprobstat/ ), are premised the
following definitions.
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A same object has some names each of which gives to it some properties. An a ≡ b
states that a and b are two names of a same object. In identifying the members of
an expression, each “ ≡ ” is considered at last coherently with the parentheses (and
analogously “ ≢ ”, “ = ”, “ ≠ ”). Is intended a⟨b⟩ ≡ ab, ⋀ ≡ and ≡ “conjunction”,
⋁ ≡ or ≡ “inclusive disjunction”, 
 ≡ xor ≡ “exclusive disjunction”. Being P , Pa and
Pb three propositions, ¬P is the proposition true if P is false and false if P is true,

Pa ⇒ Pb ≡ Pb ⇐ Pa ≡ “from Pa follows Pb” ≡ “Pa entails Pb” ≡ “Pa show Pb” ≡
“Pa gives rise to Pb” ≡ “Pa implies Pb” ≡ “Pb is due to Pa” ≡ “Pb is obtainable from Pa”

{Pa ⇒ Pb} ⋀ {Pb ⇐ Pa} ≡ {Pa ≡ Pb}

{Pa ∥ Pb} ≡ “Pa subject to condition Pb” ≡ “Pa of which Pb” ≡ “Pa where Pb”

Æ⟨a // b // c⟩ ≡ “the being a a specification of b of which c”

where “ // c” may be absent causing so the absence of “of which c”.
Also it is understood ipm ≡ “the first member of” and

{from: a1;a2; . . . ;aî; follows b0 ◇1 b1 ◇2 b2 ⋅ ⋅ ⋅ ◇î bî ◇î+1 bî+1 ⋅ ⋅ ⋅ ◇î+ĵ bî+ĵ} ≡

{a1 ⇒ {b0 ◇1 b1};a2 ⇒ {b1 ◇2 b2}; . . . ;aî ⇒ {bî−1 ◇î bî}}

where: each of {◇1,◇2, . . . ,◇î+ĵ} is a relational symbol, as for example one of {≡,≢,≠,⇒};
{◇î+1bî+1 ⋅ ⋅ ⋅◇î+ĵ bî+ĵ} may be absent and if is present the validity of its presence is con-
sidered evident; each of {a1,a2, . . . ,aî} is replaced by symbol “þ” when is considered evi-
dent the validity of the corresponding element of {{b0◇1b1},{b1◇2b2}, . . . ,{bî−1◇îbî}}.

A {ah;h = ȟ, ĥ} is a sequence, and then also a set, of ĥ− ȟ+ 1 elements. Is implicit
{h = ȟ, ĥ} ≡ {h;h = ȟ, ĥ}. A {a // P} is the set of all the different specifications of a
contextually possible when there is the condition P .

A bijection, i.e. a “one-to-one (injective) and onto (surjective)” correspondence,
between two sets a and b of which a ≡ {ah;h = 1, ĥ} and b ≡ {bk;k = 1, ĥ}, is a set
of ĥ pairs indicated a↠↞ b and defined by an a↠↞ b ≡ {ah,bk⟨h⟩;h = 1, ĥ} of which
{kh;h = 1, ĥ} = {k = 1, ĥ}.

A [ahk;h = 1, ĥ;k = 1, k̂] is the matrix that has ĥ rows, k̂ columns and ahk as
element of h-th row and k-th column. A [bk;k = 1, k̂] is a column vector i.e. a matrix
which has k̂ rows and one column.

It’s called R⟨g⟩ the set of every different value that can have the quantity g; and
R⟨g⟩, of which g ≡ {gn;n = 1, n̂}, the set of every different n̂-tuple of values that can be
respectively assumed by the quantities g. A n̂-tuple like this is also called point of R⟨g⟩.

It is placed x ≡ {xn;n = 1, n̂}. Every analytic function f(x) is understood continu-
ous in its definition domain. A f(x) ∈ Cm̂(R) is equivalent to saying that f(x) is of
class Cm̂ in R and indicates that every its mixed partial derivative of order less or
equal to m̂ is continuous at every x of which x ∈ R. A value of a f(x) is said local
when is understood in a particular point of R⟨x⟩.
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It is implicit that a f(x) expresses a variable f in the sense of f = f(x). Hence

{f(x), f(x)}⇒ {R⟨f⟩ ⊇R⟨f(x)⟩ ∪R⟨f(x)⟩}

When they are not possible misunderstanding, as occurs as long as a variable is
expressed by a only function, the function name may be replaced by that of the variable:
for example one can write y′ instead of y′(x). A f = f(x), of which f ≡ {fk;k = 1, k̂}
or f(x) ≡ {fk(x);k = 1, k̂}, is equivalent to {fk = fk(x);k = 1, k̂}.

2 Two models for approximate a function: the inter-
polating polynomial and the cubic spline.

Are considered the interpolating polynomial and the cubic spline between the
models (for which reference is made in [2], [3], [4], [5], [6], [7], [8]) for approximating a
y(x) of which R⟨x⟩ ≡ [x1,xp̂].

Both these models are interpolating i.e. they approximate y(x) on the basis of
knowledge of interpolation points x↠↞ y of which

x↠↞ y ≡ {xp,yp;p = 1, p̂} x ≡ {xp;p = 1, p̂} y ≡ {yp;p = 1, p̂}
yp= y(xp) {xp−1< xp;p = 2, p̂}

and they assume the y values at the respective x.

2.1 The interpolating polynomial

The interpolating polynomial Pi(x), which interpolates the x↠↞ y, is the polynomial,
of degree at most p̂ − 1, expressed by

Pi(x) ≡
p̂

∑
p=1

Γpxp−1 =
p̂

∑
p=1

xp−1
p̂

∑
p=1

xppyp =
p̂

∑
p=1

ypλpip(x) (1)

of which

{Γp;p = 1, p̂}≡ Γ = X−1 ⋅ y X ≡ [xp
p−1;p = 1, p̂;p = 1, p̂]

X−1 ≡ [xpp;p = 1, p̂;p = 1, p̂] λpip(x) ≡
p̂

∑
p=1

xppxp−1 λ′pip(x) ≡
p̂

∑
p=1

(p − 1)xppxp−2

The linear system X ⋅ Γ = y, that defines the coefficients Γ of Pi(x), is equivalent
to express {Pi(xp) = yp;p = 1, p̂} using the second member of (1). The (1) has at
x = 0 a singular point which however, on the basis of (2.4.2.10) of [1], it is understood
eliminated by

Pi(0) = lim
x→0

(Γ1x0 +∑p̂
p=2 Γpxp−1) = Γ1
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which follows from limx→0 x0 = 1 (which also eliminates a possible indeterminate form
00 that could happen in X).

The X, as well as its transpose X⊺, is a matrix type said of Vandermonde, of which

det X =
p̂−1

∏
p=1

p̂

∏
p=p+1

xp − xp ≠ 0

that entail the existence of X−1 and so the existence and uniqueness of Pi(x).
The δn̂, of which δn̂ ≡ [δnn;n = 1, n̂;n = 1, n̂], {δnn = 0;∀n ≠ n} and {δnn = 1;∀n =

n}, is the identity matrix (also said unit matrix). For a ≡ [amn;m = 1, m̂;n = 1, n̂],
∣a∣ ≡ [∣amn∣;m = 1, m̂;n = 1, n̂] defines ∣a∣ as the absolute value of a. In the case m̂ = n̂,
the numerical error of a inversion can be measured by the maximum value in the
matrix ∣a ⋅ a−1 − δn̂∣.

The X is typically ill-conditioned since the calculation of X−1 can induce that
the maximum in ∣X ⋅ X−1 − δp̂∣ is important, even if p̂ is not large and the numbers
are represented by a long sequence of digits. This inconvenience also relates to the
calculation of Γ as solution of X ⋅ Γ = y.

The same Pi(x) expressed by (1) has also the Lagrange form

Pi(x) =
p̂

∑
p=1

Дp(x)
Дp(xp)

yp = Д(x)
p̂

∑
p=1

yp

(x − xp)Дp(xp)
(2)

of which

Дp(x) ≡
p̂

∏
p=1
δpp + (x − xp)(1 − δpp) Д(x) ≡

p̂

∏
p=1

(x − xp)

and showing λpip(x) = Дp(x)/Дp(xp),

λ′pip(x) = Д−1
p (xp)

p̂

∑
a=1

(1 − δap)
p̂

∏
p=1
δpa + (1 − δpa)(δpp + (1 − δpp)(x − xp))

The (2) is advantageously used in place of (1), since, by not requiring the calculation
of X−1 nor the solution of X ⋅ Γ = y, implies fewer burdens and numerical errors.

Regardless of the particular form that expresses Pi(x), which affects only its
numerical aspect, for its analytical error Epi(x) is had

Epi(x) ≡ y(x) −Pi(x) =
y(p̂)(ξ1(x))

p̂!
Д(x) (3)

Epi(k)(x) ≡ y(k)(x) −Pi
(k)(x) = y(p̂)(ξ2(x))

(p̂ − k)!

p̂−k
∏
p=1

x − ζkp (4)
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of which

1 ≤ k ≤ p̂ − 1 {ξi(x) ∈ (x1,xp̂); i = 1,2}
{ζkp ∈ (xp,xp+k);p = 1, p̂ − k} {y(x) ∈ C p̂(Rx)}⇒ {(3), (4)}

The (3) and (4) imply the respective

∣Epi(x)∣ =
∣y(p̂)(ξ1(x))∣

p̂!
∣Д(x)∣ ≤ Φ⟨y(p̂)⟩

p̂!

p̂

∏
p=1

∣x − xp∣

∣Epi(k)(x)∣ =
∣y(p̂)(ξ2(x))∣

(p̂ − k)!

p̂−k
∏
p=1

∣x − ζkp∣ ≤
Φ⟨y(p̂)⟩
(p̂ − k)!

p̂−k
∏
p=1
∆̂p

of which Φ⟨y(p)⟩ ≡ max{∣y(p)(x)∣ // x ∈ (x1,xp̂)}, ∆̂p ≡ max{∣x − xp∣, ∣x − xp+k ∣}.
The Pi(x) has as inconveniences oscillatory behavior and eventuality that this

increases with p̂. Indeed, also sensibly expecting for most of cases that, with increasing
the p̂ of x equidistant, the respective interpolating polynomials converge neatly to
y(x), nevertheless this convergence is not always surely attainable, having however in
this regard the improvement of replace the x equidistant with the Chebyshev points
defined by

{xp =
xp̂ + x1

2
+

xp̂ − x1

2
cos( p̂ − p

p̂ − 1
π);p = 1, p̂}

2.2 The cubic spline

The natural cubic spline, that interpolates the x↠↞ y, is the piecewise polynomial
function made up by the p̂ − 1 polynomials {Sp(x);p = 1, p̂ − 1}, in the sense of

S(x) = Sp(x) ≡ {Sp(x) ∥ x ∈ Ip} (5)

of which Ip ≡ [xp,xp+1].
Each of {Sp(x);p = 1, p̂ − 1} is defined in the corresponding Ip and has degree at

most 3. The linear system of 4(p̂ − 1) equations

{Sp(xp) = yp,Sp(xp+1) = yp+1;p = 1, p̂ − 1} (6)

{S′p−1(xp) = S′p(xp);p = 2, p̂ − 1} (7)

{S′′p−1(xp) = S′′p(xp);p = 2, p̂ − 1} (8)

{S′′1(x1) = 0,S′′p̂−1(xp̂) = 0} (9)

is solvable in just as many unknowns constituted by the coefficients of these p̂ − 1
polynomials.

The numerical burden of knowing the {Sp(x);p = 1, p̂ − 1} by solving this system
with an algorithm of general applicability, as that of Gauss with the strategy of the
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“maximum pivot” referred in [7] and [9], can be reduced by transforming such system
as follows.

Are established {up ≡ S′′p(xp);p = 1, p̂ − 1} and up̂ ≡ S′′p̂−1(xp̂), that allow both
replace (8) with the understand {up ≡ S′′p−1(xp) = S′′p(xp);p = 2, p̂ − 1} and write (9) in
the form u1 = up̂ = 0.

The definition of Sp(x) as a polynomial of degree at most 3 implies that S′′p(x) is a
polynomial of degree at most 1. This deduction, up = S′′p(xp) and up+1 = S′′p(xp+1) entail

Æ⟨S′′p(x),{xa,ua;a = p, p + 1} //Pi(x),x↠↞ y // (2)⟩

that gives rise to

S′′p(x) =
up+1(x − xp) − up(x − xp+1)

∆p
(10)

of which ∆p = xp+1 − xp and that, on the basis of (5), show S(x) ∈ C2(Rx).
From: S′p(x) − vp = ∫ S′′p(x)dx, due to {F (x) ≡ ∫f(x)dx} ≡ {F ′(x) = f(x)}; (10);

follows

S′p(x) = ∫ S′′p(x)dx + vp = ∫
up+1(x − xp) − up(x − xp+1)

∆p
dx + vp =

up+1(x − xp)2 − up(x − xp+1)2

2∆p
+ vp (11)

From: Sp(x) −wp = ∫ S′p(x)dx; (11); follows

Sp(x) = ∫ S′p(x)dx +wp = ∫
up+1(x − xp)2 − up(x − xp+1)2

2∆p
dx + ∫ vp dx +wp =

up+1(x − xp)3 − up(x − xp+1)3

6∆p
+ vp(x − xp) +wp (12)

This deduction allows to write (6) as

{wp = yp −
∆2

pup

6
,vp =

yp+1 − yp
∆p

−
up+1 − up

6
∆p;p = 1, p̂ − 1} (13)

The (11) and expression of vp in (13) allow to write (7) as

{
∆pup

6
+
∆p +∆p+1

3
up+1 +

∆p+1up+2

6
= Yp;p = 1, p̂ − 2}

of which
Yp =

yp+2 − yp+1

∆p+1
−

yp+1 − yp
∆p

and hence, using the matrix notation and introducing (9) in the form u1 = up̂ = 0, as
the linear system s ⋅u = Y of p̂−2 equations in the just as many unknowns u, defined by

u ≡ {up;p = 2, p̂ − 1} Y ≡ {Yp;p = 1, p̂ − 2} s ≡ [spp;p = 1, p̂ − 2;p = 1, p̂ − 2]
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with the elements of s all null except

s11 =
∆1 +∆2

3
s12 =

∆2

6
sp̂−2,p̂−3 =

∆p̂−2

6
sp̂−2,p̂−2 =

∆p̂−2 +∆p̂−1

3

{sp,p−1 =
∆p

6
, spp =

∆p +∆p+1

3
, sp,p+1 =

∆p+1

6
;p = 2, p̂ − 3}

and being such system equivalent to u = s−1 ⋅Y of which s−1 ≡ [Spp;p = 1, p̂−2;p = 1, p̂−2]
and hence to

{up+1 =
p̂−2

∑
p=1

SppYp;p = 1, p̂ − 2}

The system constituted by (6), (7), (8) and (9) was transformed in that constituted
by (13), u = s−1 ⋅ Y and u1 = up̂ = 0. Therefore the introduction of these into (12) and
(11) makes known the expressions of {Sp(x),S′p(x);p = 1, p̂ − 1}, having in particular

{S′(xp) = S′p(xp) =
p̂

∑
p=1
λppyp;∀p < p̂} S′(xp̂) = S′p̂−1(xp̂) =

p̂

∑
p=1
ϑpyp (14)

of which

λpp ≡
δp,p+1δ̃p1 − δppδ̃pp̂

∆p
− (
δ̃p1δ̃pp̂K̃pp

3
+
δ̃p+1,p̂K̃p+1,p

6
)∆p

ϑp ≡
δpp̂ − δp,p̂−1

∆p̂−1
+
δ̃p̂−1,1K̃p̂−1,p

6
∆p̂−1

K̃pp ≡
δ̃p,p̂−1δ̃pp̂Sp−1,p

∆p
− δ̃pp̂δ̃p1Sp−1,p−1(∆−1

p−1 +∆−1
p ) +

δ̃p1δ̃p2Sp−1,p−2

∆p−1

where is understood δ̃ab ≡ 1 − δab whence {δ̃ab = 1;∀a ≠ b}, {δ̃ab = 0;∀a = b}, and is
considered null every addend where it appears at least a factor null.

The complete cubic spline Sc(x) differs from S(x) only for the substitution of
(9) with the assignment of known values to S′c(x1) and S′c(xp̂). The periodic cubic
spline Sp(x) differs from S(x) only for the substitution of (9) with S′p(x1) = S′p(xp̂)
and S′′p(x1) = S′′p(xp̂) when y(x1) = y(xp̂).

For Sc(x) we have (in [5]) the

∣Esc(x)∣ = ∣y(x) − Sc(x)∣ ≤
7

8
Φ̂⟨y(4)⟩ ∆̂

5

∆̌

∣E ′sc(x)∣ = ∣y′(x) − S′c(x)∣ ≤
7

4
Φ̂⟨y(4)⟩ ∆̂

4

∆̌

(15)

of which

Φ̂⟨y(p)⟩ ≡ max{∣y(p)(x)∣ // x ∈Rx} ∆̂ ≡ max{∆p;p = 1, p̂ − 1}
∆̌ ≡ min{∆p;p = 1, p̂ − 1} {y(x) ∈ C4(Rx)}⇒ (15)
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Other bounds for the errors of the cubic spline are in [2], [3], [4], [8].
With the increase of p̂, each subsequent Sc(x) and its derivatives up to second

order converges to y(x) and its corresponding derivative, with the only condition
that ∆̂/∆̌ remains limited, and having in the case of x equidistant the most rapid
convergence indicated by

∣Esc(x)∣ ≤
7

8
∆̂4Φ̂⟨y(4)⟩

In the limit as p̂→∞, i.e. as p̂ approaches ∞, consistent with the said condition,
the (15) are valid also for S(x) inasmuch this coincides with Sc(x).

The inconveniences of Pi(x), said in section 2.1, are resolved in an excellent way
by S(x), because the oscillations of this are minimal among those of all the different
functions of class C2 in Rx which interpolate the x↠↞ y, and for the said properties of
convergence to the exact value with the increase of p̂.

2.3 New bounds for the errors of a cubic spline
It is called S̃(x) a cubic spline which differs from S(x) only for the replacement of

(9) with another two equations, thus having Æ⟨S // S̃⟩, Æ⟨Sc // S̃⟩ and Æ⟨Sp // S̃⟩.
Coherently with this, is understood the possibility of replacing S with S̃(x) when
treating properties independent from (9).

From: Pg(x) of which Pg(x) ≡ {g(x)/∣g(x)∣ ≡ωg(x);∀x ∈Rx} with ωg(x) constant;
first mean value theorem for integration said in section 2.4.4 of [1]; follows

∫
Rx

f(x)g(x)dx =ωg(x)∫
Rx

f(x)∣g(x)∣dx = f(x)∫
Rx

g(x)dx (16)

of which Pg(x) ⇒ (16), x ∈ Rx, and that gives rise to ∫Rx
f(x)dx = f(x) ∫Rx

dx if
g(x) = 1.

The (10) and (5) entail

x ∈ (xp,xp+1)⇒ {S̃(3)(x) =
up+1 − up

∆p
}

S̃(3)(x1) =
u2 − u1

∆1
S̃(3)(xp̂) =

up̂ − up̂−1

∆p̂−1

(17)

Are considered as implicit

y(x) ∈ C4(Rx) E(○)p ≡ E(○)(xp) E(○)(x) ≡ S̃(○)(x) − y(○)(x)
R⟨tp⟩ ≡ (xp,xp+1) íp(t) ≡ t − xp ìp(t) ≡ t − xp+1 ω⟨G⟩ ≡ G/∣G∣

The

{Æ⟨xp,xp+1 // x // (2)⟩, t ∈ Ip}⇒ {Pi(t) =
íp(t)yp+1 − ìp(t)yp

∆p
}

{Æ⟨{xp,xp+1},{E ′′p ,E ′′p+1} // x,y // (3)⟩, t ∈ Ip}⇒ {E ′′(t) −Pi(t) =
íp(t)̀ip(t)E(4)(ξa(t))

2
}

9



of which {t ∈ Ip}⇒ {ξa(t) ∈ Rtp}, and {t ∈ Rtp}⇒ {E(4)(t) = −y(4)(t)} due to (17),
entail Ap(tp) = 0 of which

Ap(t) ≡ Ãp(t) +
íp(t)̀ip(t)∆p

2
y(4)(ξa(t)) Ãp(t) ≡ ∆pE ′′(t) + ìp(t)E ′′p − íp(t)E ′′p+1

From: these, distributive property of integration and

∫
Rx

f(x)dx = lim
R→Rx

∫
R
f(x)dx;

(16), and constancy of ω⟨́ip(t) ìp(t)⟩ if t ∈ Ip; íp(t) ìp(t) = í2p(t) − ∆p íp(t) due to
∆p ≡ íp(t) − ìp(t);

lim
a→x+p

∫
tp

a
Ap(t)dt = 0

due to Ap(tp) = 0 and Rtp ≡ (xp,xp+1); follows

lim
a→x+p

∫
tp

a
Ap(t)dt = ∫

tp

xp
Ãp(t)dt +

∆p

2
∫

tp

xp
íp(t) ìp(t)y(4)(ξa(t))dt =

∫
tp

xp
Ãp(t)dt +

∆p

2
y(4)(ξb(tp))∫

tp

xp
íp(t) ìp(t)dt = Bp(tp) = 0 (18)

of which ξb(tp) ∈Rtp and

Bp(t) ≡ ∆pE ′(t) −∆pE ′p +
ì2p(t) −∆2

p

2
E ′′p −

í2p(t)
2
E ′′p+1 + (

í3p(t)
6

−
∆p í

2
p(t)
4

)∆py(4)(ξb(tp))

From: Ep = 0; (16), constancy of ω⟨́ip(t)/6 −∆p/4⟩ if t ∈ Ip; ∫
tp

xp
Bp(t)dt = 0 due to

Bp(tp) = 0 affirmed by (18) and to Rtp ≡ (xp,xp+1); follows

∫
tp

xp
Bp(t)dt = ∆pE(tp) −∆p íp(tp)E ′p +

ì3p(tp) +∆3
p − 3∆2

p íp(tp)
6

E ′′p −

í3p(tp)
6
E ′′p+1 +∆p ∫

tp

xp
(́ip(t)/6 −∆p/4) í2p(t)y(4)(ξb(t))dt = Cp(tp) = 0 (19)

of which, being ξc(tp) ∈Rtp , is had

Cp(t) ≡ ∆pE(t) −∆p íp(t)E ′p +
í3p(t) − 3∆p í

2
p(t)

6
E ′′p −

í3p(t)
6
E ′′p+1+

∆p(
í4p(t)
24

−
∆p í

3
p(t)

12
)y(4)(ξc(t))
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By implementing for {xp+1, tp} a process similar to that for {xp, tp} has led to (18)
and (19) starting from Ap(tp) = 0, are obtained Dp(tp) = 0 and Ep(tp) = 0 of which

Dp(t) ≡ ∆pE ′(t) −∆pE ′p+1 +
ì2p(t)

2
E ′′p +

∆2
p − í2p(t)

2
E ′′p+1+

(
í3p(t)

6
+
∆3

p

12
−

í2p(t)∆p

4
)∆py(4)(ξd(t))

Ep(t) ≡ ∆pE(t) − ìp(t)∆pE ′p+1 +
ì3p(t)

6
E ′′p +

3̀ip(t)∆2
p +∆3

p − í3p(t)
6

E ′′p+1+

(
í4p(t) −∆4

p

24
+
∆2

p ìp(t) − í3p(t) +∆3
p

12
∆p)∆py(4)(ξe(tp))

where ξd(tp) ∈Rtp and ξe(tp) ∈Rtp .
The limit of Bp(tp) = 0 as tp → xp+1 gives rise, intending ζa ∈Rtp , to

E ′p − E ′p+1 +
E ′′p + E ′′p+1

2
∆p +

∆3
p

12
y(4)(ζa) = 0 (20)

The limit of Cp(tp) = 0 as tp → xp+1 gives rise, considering also Ep+1 = 0 and
intending ζb ∈Rtp , to

E ′p +
∆p

3
E ′′p +

∆p

6
E ′′p+1 +

∆3
p

24
y(4)(ζb) = 0 (21)

The limit of Ep(tp) = 0 as tp → xp gives rise, intending ζc ∈Rtp , to

E ′p+1 +
∆p

6
E ′′p −

∆p

3
E ′′p+1 −

∆3
p

24
y(4)(ζc) = 0 (22)

The Rolle’s theorem ([10],[11]) asserts

{f(x) ∈ C0[a, b], f(x) ∈ C1(a, b), f(a) = f(b)}⇒ ∃{f ′(x) = 0 ∥ x ∈ (a, b)} (23)

Is placed

F(x) ≡ E ′′(x) −
íp(x)E ′′p+1 − ìp(x)E ′′p

∆p

This, S̃(x) ∈ C2(Rx) and S̃(x) ∈ C3(Rx − {xp;p = 2, p̂ − 1}) (due to (17)) entail

F(xp) = F(xp+1) = 0 F(x) ∈ C0(Ip) F(x) ∈ C1(xp,xp+1)

This deduction and Æ⟨F(x),xp,xp+1//f(x), a, b//(23)⟩ entail, intending ζp ∈ (xp,xp+1),

E ′′p − E ′′p+1 +∆pE(3)(ζp) = 0 (24)
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Are placed the

{pA, pB} ⊆ {p = 1, p̂ − 1} pB > pA J ≡ {Jp;p = 1, p̂ − 1} L ≡ {Lp;p = 1, p̂ − 1}
{Jp = 0;∀p ∉ {p = pA, pB}} {Jp = {1
2};∀p ∈ {p = pA, pB}}

{u,v} ⊆ {p = pA, pB} {Lp = 0;∀{p ≠ u}⋁{p ≠ v}} Lu = Lv = 1 (25)

The writing of Ap(tp) = 0, Bp(tp) = 0, Cp(tp) = 0, Dp(tp) = 0, Ep(tp) = 0, (20), (21),
(22) and (24) for each of {p = 1, p̂−1}, subordinated to (25) in the sense that these specify
as follows those that are replaced by the same number of expressions all equal to 0 = 0,
gives rise to the homogeneous linear system M ⋅ V = 0m̂ (of which 0⟨a⟩ ≡ [0; i = 1,a])
defined by M ≡ [Mrc; r = 1, m̂; c = 1, n̂], m̂ ≡ 9(p̂ − 1) and n̂ ≡ 14p̂ − 12, by

V ≡ [Vc; c = 1, n̂] = [{E(tp);p = 1, p̂ − 1},{E ′(tp);p = 1, p̂ − 1},{E ′′(tp);p = 1, p̂ − 1},

{E ′p;p = 1, p̂},{E ′′p ;p = 1, p̂},{E(3)(ζp);p = 1, p̂ − 1},Q]

of which ζp ∈ (xp,xp+1) and Q ≡ {Qqp;p = 1, p̂ − 1; q = 1,8} with Qqp a q-th value of
y(4)(x) in (xp,xp+1), and by the nullity of all the elements of M that are not defined by

M ⟨H⟨p,1⟩,K⟨2,0⟩ + p⟩ = ∆pδ1Jp
M ⟨H⟨p,1⟩,K⟨3,1⟩ + p⟩ = ìp(tp)δ1Jp

M ⟨H⟨p,1⟩,K⟨3,1⟩ + p + 1⟩ = −́ip(tp)δ1Jp

M ⟨H⟨p,1⟩,K⟨4,2⟩ + p⟩ = −∆p íp(tp)̀ip(tp)δ1Jp
/2

M ⟨H⟨p,2⟩,K⟨1,0⟩ + p⟩ = ∆pδ1Jp
M ⟨H⟨p,2⟩,K⟨3,0⟩ + p⟩ = −∆pδ1Jp

M ⟨H⟨p,2⟩,K⟨3,1⟩ + p⟩ = (̀i2p(tp) −∆2
p)δ1Jp

/2

M ⟨H⟨p,2⟩,K⟨3,1⟩ + p + 1⟩ = −́i2p(tp)δ1Jp
/2

M ⟨H⟨p,2⟩,K⟨5,2⟩ + p⟩ = ∆p í
2
p(tp)(∆p/4 − íp(tp)/6)δ1Jp

M ⟨H⟨p,3⟩, p⟩ = ∆pδ1Jp
M ⟨H⟨p,3⟩,K⟨3,0⟩ + p⟩ = −∆pδ1Jp

íp(tp)

M ⟨H⟨p,3⟩,K⟨3,1⟩ + p⟩ = (́i3p(tp) − 3∆p í
2
p(tp))δ1Jp

/6

M ⟨H⟨p,3⟩,K⟨3,1⟩ + p + 1⟩ = −́i3p(tp)δ1Jp
/6

M ⟨H⟨p,3⟩,K⟨6,2⟩ + p⟩ = ∆p í
3
p(tp)(∆p/12 − íp(tp)/24)δ1Jp

M ⟨H⟨p,4⟩,K⟨1,0⟩ + p⟩ = ∆pδ1Jp
M ⟨H⟨p,4⟩,K⟨3,0⟩ + p + 1⟩ = −∆pδ1Jp

M ⟨H⟨p,4⟩,K⟨3,1⟩ + p⟩ = ì2p(tp)δ1Jp
/2

M ⟨H⟨p,4⟩,K⟨3,1⟩ + p + 1⟩ = (∆2
p − í2p(tp))δ1Jp

/2

M ⟨H⟨p,4⟩,K⟨7,2⟩ + p⟩ = ∆p(∆p í
2
p(tp)/4 −∆3

p/12 − í3p(tp)/6)δ1Jp

12



M ⟨H⟨p,5⟩, p⟩ = ∆pδ1Jp
M ⟨H⟨p,5⟩,K⟨3,0⟩ + p + 1⟩ = −∆p ìp(t)δ1Jp

M ⟨H⟨p,5⟩,K⟨3,1⟩ + p⟩ = ì3p(t)δ1Jp
/6

M ⟨H⟨p,5⟩,K⟨3,1⟩ + p + 1⟩ = (3∆2
p ìp(t) +∆3

p − í3p(t))δ1Jp
/6

M ⟨H⟨p,5⟩,K⟨8,2⟩ + p⟩ = ∆p((∆4
p − í4p(t))/24 −∆p(∆2

p ìp(t) − í3p(t) +∆3
p)/12)δ1Jp

M ⟨H⟨p,6⟩,K⟨3,0⟩ + p⟩ = δ2Jp
M ⟨H⟨p,6⟩,K⟨3,0⟩ + p + 1⟩ = −δ2Jp

M ⟨H⟨p,6⟩,K⟨3,1⟩ + p⟩ = ∆pδ2Jp
/2 M ⟨H⟨p,6⟩,K⟨3,1⟩ + p + 1⟩ = ∆pδ2Jp

/2

M ⟨H⟨p,6⟩,K⟨9,2⟩ + p⟩ = −∆3
pδ2Jp

/12

M ⟨H⟨p,7⟩,K⟨3,0⟩ + p⟩ = δ2Jp
M ⟨H⟨p,7⟩,K⟨3,1⟩ + p⟩ = ∆pδ2Jp

/3

M ⟨H⟨p,7⟩,K⟨3,1⟩ + p + 1⟩ = ∆pδ2Jp
/6 M ⟨H⟨p,7⟩,K⟨10,2⟩ + p⟩ = −∆3

pδ2Jp
/24

M ⟨H⟨p,8⟩,K⟨3,0⟩ + p + 1⟩ = δ2Jp
M ⟨H⟨p,8⟩,K⟨3,1⟩ + p⟩ = −∆pδ2Jp

/6

M ⟨H⟨p,8⟩,K⟨3,1⟩ + p + 1⟩ = −∆pδ2Jp
/3 M ⟨H⟨p,8⟩,K⟨11,2⟩ + p⟩ = ∆3

pδ2Jp
/24

M ⟨H⟨p,9⟩,K⟨3,1⟩ + p⟩ = δ1Lp
M ⟨H⟨p,9⟩,K⟨3,1⟩ + p + 1⟩ = −δ1Lp

M ⟨H⟨p,9⟩,K⟨3,2⟩ + p⟩ = −∆pδ1Lp

of which p ∈ {p = 1, p̂ − 1}, H⟨a, b⟩ ≡ 9(a − 1) + b and K⟨a, b⟩ ≡ a(p̂ − 1) + bp̂.
From M is obtained a matrix N with the following steps:

1. are posed the N ≡ [Nrc; r = 1, m̂; c = 1, n̂] ≡ M , {rm;m = 1, m̂} = {m = 1, m̂},
{cn;n = 1, n̂} = {n = 1, n̂}, r=1;

2. if r = K⟨3,2⟩ + 1 is executed step 8;

3. is posed p = max{∣N⟨rm, cn⟩∣;m = r, m̂;n = r,K⟨3,2⟩};

4. if p = 0 is executed step 8;

5. is posed {r, c} = {m,n ∥ p = ∣N⟨rm, cn⟩∣}, are exchanged the values between rr
and rr and between cr and cc;

6. are replaced the {N⟨rm, cn⟩;m = r + 1, m̂;n = r + 1, n̂} with the respective
{N⟨rm, cn⟩ − N⟨rm, cr⟩N⟨rr, cn⟩/N⟨rr, cr⟩;m = r + 1, m̂;n = r, n̂};

7. r is incremented by 1 and it is returned to step 2;

8. r is decreased by 1 and are replaced the {N⟨rm, cn⟩;n =m, n̂;m = 1,r} with the
respective {N⟨rm, cn⟩/N⟨rm, cn⟩;n =m, n̂;m = 1,r};
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9. are performed the iterations indicated by {k = 2,r} and at the k-th are re-
placed the {N⟨rm, cn⟩;m = 1, k − 1;n = k, n̂} with the respective {N⟨rm, cn⟩ −
N⟨rk, cn⟩N⟨rm, ck⟩;m = 1, k − 1;n = k, n̂}.

The N that is had after this execution verifies still the N ⋅ V = 0m̂ as when it was
placed the N ≡ M , with the advantage that each of the rows, indicated by {rk;k = 1,r},
of this additional homogeneous linear system gives rise to a corresponding

Vck = −
8

∑
q=1

p̂−1

∑
p=1

N⟨rk,K⟨q + 3,2⟩ + p⟩Qqp−

N⟨rk,K⟨3,2⟩ + u⟩E(3)(ζu) − N⟨rk,K⟨3,2⟩ + v⟩E(3)(ζv) (26)

of which

Vck ∈ {{E(tp);p = pA, pB},{E ′(tp);p = pA, pB},{E ′′(tp);p = pA, pB},{E ′p;p = pA, pB + 1},

{E ′′p ;p = pA, pB + 1}}

{∃{k ∥ Vck ≡ E
′
p},∃{k ∥ Vck ≡ E

′′
p };p = pA, pB + 1}

This, (24) and p ∈ {p = pA, pB + 1} entail

E ′′p = αp +βup(E ′′u+1 − E ′′u ) +βvp(E ′′v+1 − E ′′v )

of which

αp ≡ −
8

∑
q=1

p̂−1

∑
p=1

N⟨rap ,K⟨q + 3,2⟩ + p⟩Qqp βup ≡ −
N⟨rap ,K⟨3,2⟩ + u⟩

∆u

where ap ≡ {k ∥ ck = K⟨3,1⟩ + p}.
This implies

E ′′p+1 − E ′′p = α̃p + β̀up(E ′′u+1 − E ′′u ) + β̀vp(E ′′v+1 − E ′′v )

of which α̃p ≡ αp+1 − αp, β̀up ≡ βu,p+1 − βup, and that, by introducing p ≡ u or p ≡ v,
gives rise, intending β́uu ≡ 1 − β̀uu, to the respective

β́uu(E ′′u+1 − E ′′u ) − β̀vu(E ′′v+1 − E ′′v ) = α̃u β̀uv(E ′′u+1 − E ′′u ) − β́vv(E ′′v+1 − E ′′v ) = −α̃v

By solving with the Cramer’s method ([10]) the system in the unknowns E ′′u+1 − E ′′u
and E ′′v+1 − E ′′v constituted by these two equations, is had

E ′′u+1 − E ′′u = β̀vuα̃v + β́vvα̃u

θ̃uv
E ′′v+1 − E ′′v = β̀uvα̃u + β́uuα̃v

θ̃uv
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of which θ̃uv ≡ β́vvβ́uu − β̀vuβ̀uv.
This and the fact that occur β̀uu = β̀vv = −1 and β̀uv = β̀vu = 0, imply E ′′u+1−E ′′u = α̃u/2

and E ′′v+1 − E ′′v = α̃v/2. These and (24) entail E(3)(ζu) = α̃u/(2∆u) and E(3)(ζv) =
α̃v/(2∆v). Introducing these and α̃p = α̃p(Q) in (26), is had Vck = −∑

8
q=1∑

p̂−1
p=1 ÑkuvqpQqp

of which

Ñkuvqp ≡ N⟨rk,K⟨q + 3,2⟩ + p⟩+
N⟨rau ,K⟨q + 3,2⟩ + p⟩ − N⟨rau+1 ,K⟨q + 3,2⟩ + p⟩

2∆u
N⟨rk,K⟨3,2⟩ + u⟩+

N⟨rav ,K⟨q + 3,2⟩ + p⟩ − N⟨rav+1 ,K⟨q + 3,2⟩ + p⟩
2∆v

N⟨rk,K⟨3,2⟩ + v⟩

and that gives rise to

∣Vck ∣ =
RRRRRRRRRRR

8

∑
q=1

p̂−1

∑
p=1

ÑkuvqpQqp

RRRRRRRRRRR
≤

8

∑
q=1

p̂−1

∑
p=1

∣ÑkuvqpQqp∣ ≤
p̂−1

∑
p=1

Φp⟨y(4)⟩
8

∑
q=1

∣Ñkuvqp∣ ≤ Φ⟨y(4)⟩
p̂−1

∑
p=1

8

∑
q=1

∣Ñkuvqp∣ (27)

of which

Φp⟨y(4)⟩ ≡ max{∣y(4)(x)∣ // x ∈Rtp} Φ⟨y(4)⟩ ≡ max{∣y(4)(x)∣ // x ∈ (x1,xp̂)}

Each different choice of the pA, pB, J, u, v and {tp;p = 1, p̂ − 1} gives rise to
a correspondingly different (27) which can possibly enable a further lower upper
bound for some of the {∣Vc∣; c = 1,K⟨3,2⟩}. Hence for {∣E ′p∣;p = 1, p̂} is in particular
possible to proceed as follows. Is placed {kp ≡ ∞;p = 1, p̂} and are chosen two
natural numbers nit and n̂in of which n̂in ≥ 2. Are carried the iterations indicated
by {nin = 2, n̂in}. For every nin, if p̂ − nin ≥ 1, are carried the iterations indicated by
{pA = 1, p̂−nin}. In the pA-th of these iterations, is placed pB = pA+nin−1 and are carried
the iterations indicated by {it = 1,Nit} of which {Nit > Nit;∀{pA = 1}
{pA = p̂−nin }}
and {Nit = Nit;∀pA ∈ {p = 2, p̂ − nin − 1}}. For every it, are chosen {Jp, tp;p = pA, pB}
and {u,v} in conformity with (25), are calculated the corresponding {Kp;p = pA, pB+1}
using Kp = ∑p̂−1

p=1∑
8
q=1∣Ñkuvqp∣ and k ≡ {k ∥ ck = K⟨3, 2⟩+p}, and for every {p = pA, pB+1}

is replaced Kp with Kp if Kp < Kp. After these steps is had

{∣E ′p∣ ≤ KpΦ⟨y(4)⟩;p = 1, p̂} (28)

which generally improves with the increase of n̂in and, for the evident greater in-
fluence on E ′p of those of the {Ip;p = 1, p̂ − 1} that are closer to it, even more with
the increase of nit.
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3 The maximum absolute value of a derivative de-
fined on a curve of the multidimensional Euclidean
space

A vector, also called free vector, is a straight line segment, defined by a direction
(it can lie on whichever straight line identifiable as an element of a corresponding
infinite set of parallel straight lines), by a sense (its extreme points are distinct as
initial and terminal) and by a length (or magnitude) which is its measure. A vector
applied at a point is a vector which has such point as initial. A versor, also called unit
vector, is a vector which has unitary magnitude.

For a vector x⃗, ∣x⃗∣ (of which ∣x⃗∣ ≡ x ≥ 0) and υ⃗⟨x⟩ indicate respectively magnitude
and versor of x⃗, being υ⃗x the vector which has same direction and sense of x⃗ but
unitary magnitude. The product ax⃗, of the real number a and x⃗, is a vector that has
same direction of x⃗, same sense of x⃗ if a > 0 or opposite to that of x⃗ if a < 0, and
magnitude of which ∣ax⃗∣ = ∣a∣∣x⃗∣; and from this follows x⃗ = xυ⃗x. The scalar product
a⃗ ⋅ b⃗ of the vectors a⃗ and b⃗ is defined by a⃗ ⋅ b⃗ ≡ ab cosαab where αab is the smaller
angle between a⃗ and b⃗ when these are specified as vectors applied at a same point.

Are placed Rn̂ ≡∏n̂
n=1 R1, R1 ≡ R ≡ (−∞,∞), and thus (referring to section 2.4.1 of

[1]) is had Rn̂↠↞ Sn̂ with Sn̂ a n̂-dimensional Euclidean space. It is intended that Sn̂ is
equipped with a orthogonal Cartesian reference system, which has coordinates x each
measured on the respective coordinated axes, and which has coordinated versors υ⃗, of
which υ⃗ ≡ {υ⃗n;n = 1, n̂}, each having direction and sense of the respective coordinate
axis. A x⃗ ≡ ∑n̂

n=1 xnυ⃗n defines x⃗ as a vector of Sn̂ which has the components x. Is
had υ⃗n ⋅ υ⃗n = δnn, x⃗ ⋅ υ⃗x = x,

x⃗ ⋅ x⃗ = x2 = (
n̂

∑
n=1

xnυ⃗n)2 =
n̂

∑
n=1

n̂

∑
n=1

xnxnυ⃗nυ⃗n =
n̂

∑
n=1

x2
n

whose x2 = ∑n̂
n=1 x

2
n generalizes the Pythagorean theorem.

Are placed {C↠↞ [č, ĉ]} ⊆ {S1↠↞ R1} and C ⊂ Sn̂. These define C as a curve lying in
S

n̂ and which does not intersect itself. Such C is identified by its parametric functions
ж(c) of which ж(c) ≡ {жn(c);n = 1, n̂} and defined in R⟨c⟩ of which Rc ≡ [č, ĉ], being
c the curvilinear abscissa measured on C in the sense that c − č is the length of the
section of C which has ж(č) and ж(c) as extreme points. These ж(c) constitute the
parametric equations of C i.e. the ж = ж(c) of which ж ≡ {жn;n = 1, n̂} ∈ C.

The versor τ⃗, tangent to C at the point ж, is expressed by τ⃗ = τ⃗(c) ≡ ∑n̂
n=1 τn(c)υ⃗n

of which τn = ж′
n with τn the n-th direction cosine of the tangent to C at ж and

oriented concordantly with increasing c.
A C is regular if {жn(c) ∈ C1(Rc);n = 1, n̂} and thus, in the graphical aspect, if

is, beyond that continuous, also devoid of angular points or cusps where the function
τ⃗(c) would have a jump.

The said ∑n̂
n=1 x

2
n = x2 has the specification ∑n̂

n=1 τ
2
n = 1. Multiplying this by (dc)2

and considering τn = dжn /dc is deduced (dc)2 = ∑n̂
n=1(dжn)2 (valid for a regular C).
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Is placed f(c) ≡ f(ж(c)). From: this; the known rules of derivation of a composite
function, τn = ж′

n; follows

f′(c) = df(ж(c))
dc

=
n̂

∑
n=1

∂f(ж)
∂жn

τn = ∇f(ж) ⋅ τ⃗ (29)

where f′(c) is the directional derivative of f(x) at the point ж(c) according to
direction and sense of τ⃗, the vector ∇f(ж) is the gradient of f(ж) defined by ∇f(x) ≡
∑n̂

n=1 υ⃗n∂f(x)/∂xn, and of which {∂f(x)/∂xn = ∂f(ж)/∂жn;∀x ≡ ж}.
The h-th derivative of the product of two functions f(x) and g(x) is expressed by

the Leibniz’s rule ([10],[11])

(fg)(h) =
h

∑
k=0

(h
k
)f(h−k)g(k) (30)

where (h
k
) is the binomial coefficient defined by

(n
k
) ≡ n!

k!(n − k)!
= ∏

n
i=n−k+1 i

k!

The symbol “ . . .” generally implies other symbols considered evident, and in
particular when it is inserted in a sequence indicates that this is constituted by
elements that vary from the first to the last neatly with the next trend indicated by the
first two, thus having {s1, s2, . . . sk ∥ k = 1} ≡ s1 and {s1, s2, . . . sk ∥ k = 2} ≡ {s1, s2}.

Are placed o ≥ 1 and

f{ni;i=1,a} ≡ fn1n2...na ≡
∂af(ж)

∂жn1 ∂жn2 . . . ∂жna

from which it follows in particular fn ≡ ∂f(ж)/∂жn.
From: o ≥ 1; (29); þ; Æ⟨τn, fn,o − 1 // f,g, h // (30)⟩; follows

f(o) = (f′)(o−1) = (
n̂

∑
n=1

fnτn)(o−1) =
n̂

∑
n=1

(τnfn)(o−1) =
n̂

∑
n=1

o−1

∑
k=0

(o − 1

k
)τ(o−k−1)

n f(k)n (31)

which gives rise to

∣f(o)∣ ≤
n̂

∑
n=1

o−1

∑
k=0

(o − 1

k
)∣τ(o−k−1)

n f(k)n ∣ ≤ ΨoΦ̂o (32)

of which

Ψo ≡
n̂

∑
n=1

o−1

∑
k=0

(o − 1

k
)∣τ(o−k−1)

n ∣ Φ̂o ≡ max{∣f(k)n ∣;k = 0,o − 1;n = 1, n̂}
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Is placed Pτ ≡ {τn(c) ≡ tn;n = 1, n̂} for which is had Pτ if the {τn;n = 1, n̂} are
constant as happens when the curve C is a straight line segment. From: Pτ, first and
fourth member of (31); follows ipm

⎧⎪⎪⎨⎪⎪⎩
∣f(o)∣ = ∣

n̂

∑
n=1
τnf(o−1)

n ∣ ≤
n̂

∑
n=1

∣τnf(o−1)
n ∣ ≤ Ψr ∣f(o−1)

no
∣
⎫⎪⎪⎬⎪⎪⎭
⇐ Pτ (33)

of which

Ψr ≡
n̂

∑
n=1

∣τn∣ ∣f(o−1)
no

∣ ≡ max{∣f(o−1)
n ∣;n = 1, n̂}

The Ψr ≤ Ψo, ∣f(o−1)
no

∣ ≤ Φ̂o, (32) and (33) show how Pτ entails an upper bound of
∣f(o)∣, i.e. of the maximum absolute value of a derivative defined on a curve, generally
less than that implied by ¬Pτ.

From: Pτ, (31); Pτ, Æ⟨fn1 ,o − 1 // f(o),o // (31)⟩;. . . ; follows ipm

⎧⎪⎪⎨⎪⎪⎩
f(o) =

n̂

∑
n1=1

τn1 f(o−1)
n1

=
n̂

∑
n1=1

n̂

∑
n2=1

τn1τn2 f(o−2)
n1n2

= ⋅ ⋅ ⋅ =
n̂

∑
n1=1

n̂

∑
n2=1

. . .
n̂

∑
no=1

Θn1n2...no

⎫⎪⎪⎬⎪⎪⎭
⇐ Pτ

(34)
of which Θn1n2...no ≡ τn1τn2 . . .τno fn1n2...no .

The numerosity of the set of all dispositions with repetition of class k of n objects is
nk. A mcba is a-th element of b-th disposition with repetition of class c of {m = m̌, m̂}.
Is had

m̂

∑
m1=m̌

m̂

∑
m2=m̌

. . .
m̂

∑
mk=m̌

gm1m2...mk =
(m̂−m̌+1)k

∑
b=1

g{mkba;a=1,k} (35)

The
Æ⟨{n = 1, n̂},o,Θn1n2...no // {m = m̌, m̂},k,gm1m2...mk // (35)⟩

entails
n̂

∑
n1=1

n̂

∑
n2=1

. . .
n̂

∑
no=1

Θn1n2...no =
n̂o

∑
b=1

Θ{noba;a=1,o} (36)

where noba is a-th element of b-th disposition with repetition of class o of {n = 1, n̂}.
From: Pτ, (34), (36); expression of Θn1n2...no ; follows ipm

⎧⎪⎪⎨⎪⎪⎩
∣f(o)∣ =

RRRRRRRRRRR

n̂o

∑
b=1

Θ{noba;a=1,o}

RRRRRRRRRRR
=
RRRRRRRRRRR

n̂o

∑
b=1
τnob1

τnob2
. . .τnobo fnob1nob2...nobo

RRRRRRRRRRR
≤

n̂o

∑
b=1

∣τnob1
τnob2

. . .τnobo fnob1nob2...nobo ∣ ≤ ΨroΦ̂ro

⎫⎪⎪⎬⎪⎪⎭
⇐ Pτ (37)
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of which

Ψro ≡
n̂o

∑
b=1

Θ̆{noba;a=1,o} Θ̆{na;a=1,o} ≡ ∣τn1τn2 . . .τno ∣

Φ̂ro ≡ max

⎧⎪⎪⎨⎪⎪⎩
∣ ∂of(ж)
∂жn1 ∂жn2 . . . ∂жno

∣ // {na ∈ {n = 1, n̂};a = 1,o}
⎫⎪⎪⎬⎪⎪⎭

For the ∣f(o−1)
no

∣ of (33) is had Æ⟨o − 1, fno // o, f // (33)⟩ which implies

Pτ ⇒ {∣f(o−1)
no

∣ ≤ Ψr ∣f(o−2)
nono−1

∣} ∣f(o−2)
nono−1

∣ ≡ max{f(o−2)
non ;n = 1, n̂}

This, Pτ and (33) entail ∣f(o)∣ ≤ Ψ2
r ∣f(o−2)

nono−1
∣; and, by decreasing subsequently in

the same way up to 0 the derivation order of the second member, is reached the first
bound of

{∣f(o)∣ ≤ Ψo
r ∣fnono−1...n1 ∣ ≤ Ψo

rΦ̂ro}⇐ Pτ (38)

of which ∣fnono−1...n1 ∣ ≡ max{∣fnono−1...n∣;n = 1, n̂}.
The comparison between (37) and (38) show Ψro = Ψo

r which can be confirmed as
follows. From: definition of Ψro;

Æ⟨{n = 1, n̂},o, Θ̆{noba;a=1,o} // {m = m̌, m̂},k,g{mkba;a=1,k} // (35)⟩;

definition of Θ̆{na;a=1,o}; þ; þ; definition of Ψr; follows

Ψro ≡
n̂o

∑
b=1

Θ̆{noba;a=1,o} =
n̂

∑
n1=1

n̂

∑
n2=1

. . .
n̂

∑
no=1

Θ̆n1n2...no =
n̂

∑
n1=1

n̂

∑
n2=1

. . .
n̂

∑
no=1

∣τn1τn2 . . .τno ∣ =

n̂

∑
n1=1

∣τn1 ∣
n̂

∑
n2=1

∣τn2 ∣ . . .
n̂

∑
no=1

∣τno ∣ = (
n̂

∑
n=1

∣τn∣)
o
= Ψo

r

4 The approximation of a linear combination of di-
rectional derivatives that expresses a partial deriva-
tive at a intersection of some curves

Is considered the set of curves {Cc; c = 1, ĉ} of which ĉ ≥ n̂,

{Æ⟨Cc,cc,жc,жcn, čc, ĉc // C,c,ж,жn, č, ĉ // (29)⟩,x = жc(c̃c); c = 1, ĉ}
cc1 = čc = 0 cĉic = ĉc {cc,i−1 < cci; i = 2, îc} c̃c ≡ ccic ic ∈ {i = 1, îc}

This gives rise to the linear system T ⋅ D = F of which

T ≡ [τcn; c = 1, ĉ;n = 1, n̂] τcn = ж′
cn(c̃c) D ≡ {∂f(x)

∂xn
;n = 1, n̂}

{∂f(x)
∂xn

=
∂f(жc(c̃c)
∂жcn

; c = 1, ĉ} F ≡ {Fc; c = 1, ĉ} Fc = f′c(c̃c) fc(cc) ≡ f(жc(cc))

19



Is considered the {cnb;n = 1, n̂; b = 1, b̂} that verifies

{det Tb ≠ 0; b = 1, b̂} Tb ≡ [τcnbn;n = 1, n̂;n = 1, n̂]

This and (2.3.4) of [1] entail {D = T−1
b ⋅ Fb; b = 1, b̂} of which

T−1
b ≡ [Tbnn;n = 1, n̂;n = 1, n̂] Fb ≡ {Fcnb

;n = 1, n̂}

and which gives rise to

{DAb = T−1
b ⋅ FAb; b = 1, b̂} DAb ≡ {−DAbn;n = 1, n̂} FAb ≡ {−FAcnb

;n = 1, n̂}

The D = T−1
b ⋅Fb and DAb = T−1

b ⋅FAb imply D+DAb = T−1
b ⋅Fb+T−1

b ⋅FAb from which follows

Ẽb = T−1
b ⋅ Eb Ẽb ≡ D + DAb ≡ {Ẽbn;n = 1, n̂} Ẽbn = ∂f(x)

∂xn
− DAbn

Eb ≡ Fb + FAb ≡ {Ecnb
;n = 1, n̂} Ec = Fc − FAc

Is considered every FAc as a known approximation of the unknown Fc, by following,
for DAb = T−1

b ⋅ FAb and D = T−1
b ⋅ Fb, that every DAbn is a known approximation of the

unknown ∂f/∂xn, and therefore that Ecnb
and Ẽbn are the errors of the respective

approximations of Fcnb
with FAcnb

and of ∂f/∂xn with DAbn.
The Æ⟨cci, fc(cci); i = 1, îc // xp,y(xp);p = 1, p̂ // (14)⟩ allows to place

FAc =
îc
∑
i=1

Λcifc(cci) (39)

whose {Λci; i = 1, îc} are knowable by means of

Æ⟨c̃c,{cci; i = 1, îc} // xp,{xp;p = 1, p̂} // (14)⟩
{Æ⟨Λci; i = 1, îc // λpp;p = 1, p̂ // (14)⟩;∀ic < îc}
{Æ⟨Λci; i = 1, îc // ϑp;p = 1, p̂ // (14)⟩;∀ic = îc}

The Æ⟨Fc, FAc,−Ec // y′(xp), S̃′(xp),E ′p // section 2.3⟩, due to (39) and Ec = Fc − FAc,
entails ∣Ec∣ ≤ Kcϕc whose Kc is knowable by means of Æ⟨−Ec,Kc,ϕc // E ′p,Kp,Φ⟨y(4)⟩ //
(28)⟩ and of which ϕc ≡ max{∣f(4)c ∣ // c ∈ (0, ĉc)}.

This and Æ⟨fc(cc),4 // f(c),o // (32), (38)⟩ allow to place ϕc = ψ̃cφc whose ψ̃c is
known. Therefore is had ∣Ec∣ ≤ ψcφc of which ψc ≡ Kcψ̃c and with ψc known.

The Ẽb = T−1
b ⋅ Eb has the expression {Ẽbn = ∑n̂

n=1 TbnnEcnb
;n = 1, n̂} that, on the

basis of ∣Ec∣ ≤ ψcφc, gives rise to {∣Ẽbn∣ ≤ ψ̆bnφ̂;n = 1, n̂} of which φ̂ ≡ max{φc; c = 1, ĉ}
and whose ψ̆bn is made known by ψ̆bn ≡ ∑n̂

n=1∣Tbnn∣ψcnb
.

These bounds imply that the most convenient, among the alternative {Ẽbn; b = 1, b̂},
is the Ẽb̃n of which b̃ ≡ {b ∥ ψ̆bn = min{ψ̆bn;b = 1, b̂}}.
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From: this and Ẽbn ≡ ∂f/∂xn−DAbn; DAbn = ∑n̂
n=1 TbnnFAcnb

(due to DAb = T−1
b ⋅FAb);

(39); fc(cc) ≡ f(жc(cc)); follows

∂f(x)
∂xn

= DAb̃n + Ẽb̃n =
n̂

∑
n=1

Tb̃nnFAcnb̃ + Ẽb̃n =
n̂

∑
n=1

Tb̃nn

îcnb̃

∑
i=1

Λcnb̃ifcnb̃(ccnb̃i) + Ẽb̃n =

n̂

∑
n=1

Tb̃nn

îcnb̃

∑
i=1

Λcnb̃if(жcnb̃
(ccnb̃i)) + Ẽb̃n

that, admitting Ẽb̃n ≈ 0, gives rise to

∂f(x)
∂xn

≈
n̂

∑
n=1

îcnb̃

∑
i=1

Tb̃nnΛcnb̃ifcnb̃(ccnb̃i) (40)

as an approximation of the linear combination of directional derivatives ∑n̂
n=1 Tb̃nnFcnb̃ ,

which, according to D = Tb̃
−1 ⋅ Fb̃, expresses ∂f(x)/∂xn at the point x of which

{x = жc(c̃c); c = 1, ĉ}.

5 The formulation of a differential analytical model
and its numerical solution as the unknowns of a
total system

The generic differential analytical model M, whose solution is (as said in the
introduction) the purpose of this paper, has an expression M⟨x⟩ of which

Mx ≡ {em(fm(x),dm(x),fnm(x)) = 0;m = 1, ˆ”mffl} fm(x) ⊆ f(x) dm(x) ⊆ d(x)

fnm(x) ⊆ fn(x) f(x) ≡ {fm(x);m = 1, m̂} d(x) ≡ {dd(x);d = 1, d̂}
fn(x) ≡ {fnm(x);m = m̂ + 1, m̂} f̄d(x) ≡ {f̄do(x); o = 0, ôd}

m̂ ≤ ˆ”mffl ôd > 0 md ∈ {m = 1, m̂} f̄d0 ≡ fmd
f̄dôd

≡ dd

dd ≡
∂ôdfmd

∂xnd1
∂xnd2

. . . ∂xndôd

{f̄do ≡
∂f̄d,o−1

∂xndo

≡ ∂ofmd

∂xnd1
∂xnd2

. . . ∂xndo

; o = 1, ôd}

where: f(x) are unknown functions which appear autonomously (i.e. as derivatives
of order 0) or in d(x) as functions to be derived; d(x) are unknown functions, since
they are derivatives whose functions to be derived are the unknown f(x); fn(x) are
functions whose values are known at the points of R⟨x⟩ where is desired to know
the f(x); each {ndo;o = 1, o} (of which 1 ≤ o ≤ ôd) is a combination generally with
repetition of class o of the {n = 1, n̂} and is replaceable by an its permutation as
enables the Schwarz’s theorem ([10],[11]); x is arbitrary unless x ∈Rx.

The knowledge of f(x) can be considered prevented by not knowing d(x), in the
sense that, if these were functions known of f(x), M⟨x⟩ would be solved as a system
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of ˆ”mffl non differential equations in the m̂ unknowns constituted by the f(x). Therefore
a solution of M, numerical as it is understood in the following, can be obtained by
removing this obstacle by means of approximating the values of d(x) with known
functions of values of f(x).

One such solution is a set of numbers called F, of which

F ≡ {fmp;m = 1, m̂;p = 1, p̂} fmp ≈ fm(xp) xp ∈Rx

X ≡ {xp;p = 1, p̂} ⊂Rx 1 ≤ p̂ ≠∞

In seeking a F, are given as known Rx, X, {fn(xp);p = 1, p̂} and contingently a set
of conditions C of which

C ⊂ {{fm(xp) − f̃mp = 0;m = 1, m̂},

{f̄do(xp) − F̄dop = 0; o = 1, ôd;d = 1, d̂};p = 1, p̂} (41)

where each fm(xp) − f̃mp = 0 means that fm(x) has at xp the known value f̃mp, and
similarly for each f̄do(xp) − F̄dop = 0.

These C imply the eventuality that at some xp become all known the f(xp) i.e.
the chance of some relations of type

{fm(xp) − f̃mp = 0;m = 1, m̂} ⊂ C

and therefore give rise to a

X̃ ≡ {x̃p;p = 1, p̂} ≡ {xpp
;p = 1, p̂} ⊆ X

such that the numerosity of X̃ is the maximum compatibly with being at each x̃p
unknown at least one of the f(x̃p). Moreover is had also the eventuality that the C do
take the form 0 = 0 to some equations of a M⟨x̃p⟩.

Is called Mp the system of m̂p equations constituted by the

C ∩ {f̄do(xpp
) − F̄dopp = 0; o = 1, ôd;d = 1, d̂}

and by those that are obtained by removing from M⟨x̃p⟩ the equations that the C
reduce to the useless form 0 = 0.

A such Mp can be lacking in some of the {{fm(x̃p);m = 1, m̂},{dd(x̃p);d = 1, d̂}},
may include some of the C and is had

Mp ≡ {Epm(Fpm,Dpm(x̃p));m = 1, m̂p} Fpm ⊆ Fp ≡ {Fpm;m = 1, m̃p} ⊆ f(x̃p)
Dpm(x̃p) ⊆ Dp(x̃p) ≡ {Dpd(x̃p);d = 1, d̂p} m̃p ≤ m̂p öpd > 0 mpd ∈ {m = 1, m̂}

f̈pd ≡ {f̈pdo; o = 0, öpd} f̈pd0 ≡ fmpd f̈pdöpd ≡ Dpd

Dpd ≡
∂öpdfmpd

∂xnpd1
∂xnpd2

. . . ∂xnpdöpd

{f̈pdo ≡
∂f̈pd,o−1

∂xnpdo

≡
∂ofmpd

∂xnpd1
∂xnpd2

. . . ∂xnpdo

; o = 1, öpd} (42)
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where: Fp are unknown and appear autonomously or as functions to be derived; Dp(x̃p)
are all treated as unknown even if some of them are made known by C; each {npdo; o =
1, öpd} is a combination generally with repetition of class öpd of the {n = 1, n̂}.

Therefore the total system M, of which M ≡ {Mp;p = 1, p̂}, is a system of Ne

equations, of which Ne = ∑p̂
p=1 m̂p, where are unknown {Dp(x̃p);p = 1, p̂} and the Ni

values {Fp;p = 1, p̂} of which Ni = ∑p̂
p=1 m̃p ≤ Ne. Expressing then each of {Dpd(x̃p);d =

1, d̂p;p = 1, p̂} by means of a respective

Dpd(x̃p) = d̃pd(F pd,ETpd) ≡ D(F pd) + ETpd ≈ D(F pd) (43)

of which F pd ≡ {Fpdi; i = 1, p̂pd} ⊆ {fmpd(xp);p = 1, p̂}, F pd ⊆ {Fp;p = 1, p̂}, and where
D(F pd) is a known function that approximates d̃pd(F pd,ETpd) with an error ETpd of
which is admitted ETpd ≈ 0; M becomes a system {ETs(Fp;p = 1, p̂) = 0; s = 1,Ne},
nondifferential and generally nonlinear, of Ne equations in the Ni unknowns {Fpm;m =
1, m̃p;p = 1, p̂}, and that according to Ni ≤ Ne can be solved with the known methods
of numerical analysis such as that of Newton-Raphson reported in section 2.4.5 of [1].

Indeed this method is feasible by calculating some successive solutions of a linear
system and, in the case, as is M, of a number of equations ne not less than the number
of unknowns ni, each of these solutions is obtainable by applying the (2.3.4) of [1],
and in particular using the Gauss’s method with the variant of “maximum pivot” and
with the only modification of considering all the ne equations even if the implicated
pivots are only ni.

In seeking a F, as the C are contingently known other conditions, each consisting
of an equation similar to those of M, i.e. of the type a(b(x),c(x),x) = 0 of which
b(x) ⊆ f(x) and c(x) ⊆ d(x), but imposed only on some of the X i.e. only on the
elements of a Ẋ of which X ⊃ Ẋ. Each of these other conditions can be introduced
as follows: are added to f(x) an auxiliary unknown function fa(x) and to M the
corresponding equation multiplied by fa(x); are added to C the conditions constituted
on having fa(x) the values respectively 1 and 0 in the elements of Ẋ and X − Ẋ.

6 The approximation of a derivative of the total sys-
tem with a linear combination of local values of
the function to be derived

6.1 The set of rectilinear segments
In relation to X ≡ {xp;p = 1, p̂} said in section 5, are placed

xp ≡ {xpn;n = 1, n̂} {a, b} ⊂ {p = 1, p̂} đab ≡

¿
ÁÁÀ n̂

∑
n=1

(xbn − xan)2

τ⃗ab ≡
n̂

∑
n=1
τabnυ⃗n τabn ≡ xbn − xan

đab
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so đab, τ⃗ab, τabn are respectively the distance between xa and xb, the versor of the
straight line through these and oriented from xa to xb, the n-th cosine director
of such line.

It is understood that from X is deducible a set R of straight line segments, whose
numerosity is maximum compatibly with the

R ≡ {Rr; r = 1, r̂} r̂ ≥ 1 {∃xp ∈ Rr;p = 1, p̂} Æ⟨Rr, rr, řr, r̂r // C,c, č, ĉ // sec. 3⟩

řr = rr1 = 0 ∃ r̂r = đab Pr ≡ {xpri
; i = 1, îr} = Rr ∩X îr ≥ 3

{rri < rr,i+1; i = 1, îr − 1} rri = đpr1pri (44)

Are considered the {xk;k = 1, k̂} of which x1 ≢ xk̂. The condition for which these k̂
points lie on a same straight line is expressed by {τ⃗1k =ωkτ⃗1k̂;k = 2, k̂ − 1}, of which
ωk ≡ ±1 and

{τ⃗1k =ωkτ⃗1k̂;k = 2, k̂ − 1} ≡
{{τ1kn = τ1k̂n;n = 1, n̂}
{τ1kn = −τ1k̂n;n = 1, n̂};k = 2, k̂ − 1} (45)

on the basis of

{τ⃗1k =ωkτ⃗1k̂} ≡ {τ⃗1k ⋅ υ⃗n =ωkτ⃗1k̂ ⋅ υ⃗n;n = 1, n̂} ≡ {τ1kn =ωkτ1k̂n;n = 1, n̂} ≡
{τ1kn = τ1k̂n;n = 1, n̂}
{τ1kn = −τ1k̂n;n = 1, n̂}

The knowledge of {Pr; r = 1, r̂} can be achieved with the following algorithm. Are
placed r̂ = 0,

Aabr̂ ≡ {¬{τ⃗ak =ωkτ⃗ab;k = αr,βr}; r = 1, r̂} Bab ≡ ∃{τ⃗ak =ωkτ⃗ab ∥ xk ∈ X − {xa,xb}}

and are carried out the (p̂
2
) iterations {iab; b = a + 1, p̂;a = 1, p̂ − 1}. For each iab, if

{{Aabr̂ ∥ r̂ > 0}⋀Bab}�{{r̂ = 0}⋀Bab}

(this condition can be controlled by means of (45)) r̂ is incremented of 1 and are
placed αr̂ = a, βr̂ = b. After these iterations are known the {αr,βr; r = 1, r̂} and are
carried out the iterations indicated by {r = 1, r̂}. For each r, is placed îr = 0 and are
carried out the iterations indicated by {p = 1, p̂}. For each p, if

{τ⃗αrp =ωpτ⃗αrβr
}⋀{p ∉ {αr,βr}}

then îr is incremented of 1 and is placed pr̂ir = p. After these p̂ iterations, is modified
the subsequent order of the elements of {pri; i = 1, îr} so as to have

∃đpr1pri
= max{đpraprb

;a = 1, îr; b = 1, îr} {đpr1pri < đpr1pr,i+1 ; i = 2, îr − 1}

At the end of this algorithm is known the {pri; i = 1, îr; r = 1, r̂} that makes known
{Pr; r = 1, r̂}.
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6.2 An original algorithm that expresses, by means of a tree
graph, the linear combination that approximates a deriva-
tive of the total system.

An approximation (43) of a Dpd(x̃p) (of which (42)) can be obtained using as a
logical schema an oriented tree graph implemented by means of

{Æ⟨f̈pd,o−1(x) // f(x) // (40)⟩; o = 1, öpd}

and of the segments R of section 6.1.
A graph ǧ, of which ǧ ≡ {ň, ǎ}, is constituted by a set of nodes ň of which

ň ≡ {ňň; ň = 1, ň̂}, ň̂ ≠ ∞, and by a set of arcs ǎ of which ǎ ≡ {ǎǎ; ǎ = 1, ǎ̂}, ǎ̂ ≠ ∞,
ǎǎ ≡ (ňa, ňb), ňa ∈ ň, ňb ∈ ň.

An arc (ňa, ňb) is directional since it identifies the nodes ňa and ňb respectively as
the origin and destination of an inherent way.

A č ≡ {ǎǎi ; i = 1, î − 1}, of which ǎǎi ≡ (ňňi , ňňi+1) ∈ ǎ, defines č as a path of ǧ i.e.
as a way that goes from ňň1 to ňňî

passing successively for the {ňňi ; i = 2, î − 1}.
A ǧ is connected if {∃ č;∀{ňň1

, ňňî
} ⊆ ň}. A ǧ is oriented or not oriented,

respectively if (ňa, ňb) ≢ (ňb, ňa) or (ňa, ňb) ≡ (ňb, ňa). A ǧ is a tree if ǎ̂ = ň̂ − 1
and is connected the graph that is deduced from it by adding to each (ňa, ňb) a
respective (ňb, ňa). A oriented tree ǧ has a root node ňr, of which ňr ∈ ň, that verifies
{ň ∈ ň − ňr}⇒ ∃{č ∥ {ňň1 , ňňî

} ≡ {ň, ňr}} or

{ň ∈ ň − ňr}⇒ ∃{č ∥ {ňň1 , ňňî
} ≡ {ňr, ň}} (46)

A ňň ≡ ṡ affirms that the object ṡ is associated with the node ňň. The oriented
tree ǧ, which is used to obtain an approximation (43) of a Dpd(x̃p), is in particular
specified, besides that by ǎ̂ = ň̂ − 1 and (46), by

ň = {ňq; q = 0, öpd} ňq ≡ {ňňqń
; ń = 1, ń̂q} ň0 ≡ ňň01 ≡ ňr ¬∃{ǎǎ ∥ ňa ∈ ňöpd

}

{¬∃{ǎǎ ∥ {ňa, ňb} ⊆ ňq}; q = 0, öpd} {¬∃{ǎǎ ∥ ňa ∈ ňq, ňb ∉ ňq+1}; q = 0, öpd − 1}

ǎ = {(ňňqń
, ňň̃qńnŋ);ŋ = 1, ŋ̂qńn;n = 1, n̂; ń = 1, ń̂q; q = 0, öpd − 1}

and (with reference to (42) and x̃p ≡ xpp
) by ňň01 ≡ Dpd(xp̃01

), p̃01 = pp,

{ňňqń
≡ f̈pd,öpd−q(xp̃qń

); ń = 1, ń̂q; q = 1, öpd − 1}

{ňňöpdń
≡ fmpd(xp̃öpdń

); ń = 1, ń̂öpd}

of which {p̃qń ∈ {p = 1, p̂}; ń = 1, ń̂q; q = 0, öpd} and X ≡ {xp;p = 1, p̂}, and (with
reference to (41) and (44)) by

{{{f̈pd,öpd−q(xp̃qń
) − F̈pd,öpd−q,p̃qń

= 0} ∈ C}≡ ¬∃ (ňňqń
, ňb) ∈ ǎ; ń = 1, ń̂q; q = 1, öpd − 1}

{{ňň̃qńnŋ ≡ f̈pd,öpd−q−1(xprqńnŋ
);ŋ = 1, ŋ̂qńn}, ŋ̂qńn = îrqńn

;n = 1, n̂; ń = 1, ń̂q; q = 0, öpd − 1}
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of which rqńn ∈ {r = 1, r̂}, R ≡ {Rr; r = 1, r̂}, ⋂n̂
n=1 Rrqńn

= xp̃qń
.

The identification of the ǧ in question is completed by

{Æ⟨f̈pd,öpd−q(xp̃qń
),xnpd,öpd−q

,{{f̈pd,öpd−q−1(xprqńnŋ
);ŋ = 1, îrqńn

},Rrqńn
;n = 1, n̂}//

∂f(x)
∂xn

,xn,{{fcnb̃(ccnb̃i); i = 1, îcnb̃},Ccnb̃
;n = 1, n̂} // (40)⟩; ń = 1, ń̂q; q = 0, öpd − 1}

that gives rise to

{f̈pd,öpd−q(xp̃qń
) ≈

n̂

∑
n=1

îrqńn

∑
ŋ=1

Λqńnŋf̈pd,öpd−q−1(xprqńnŋ
); ń = 1, ń̂q; q = 0, öpd − 1}

where each Λqńnŋ is known as a specification of the Tb̃nnΛcnb̃i of (40), having

{{ňň̃qńnŋ ≡ Λqńnŋ;ŋ = 1, ŋ̂qńn}, ŋ̂qńn = îrqńn
;n = 1, n̂; ń = 1, ń̂q; q = 0, öpd − 1}

In what has just been said, is used the set of straight line segments R instead of
a set of curves generally not straight, because (as said in section 3) the maximum
absolute value of a derivative defined on a curve is generally less if this is a straight
segment, and therefore is generally less also the inherent error (of the type (28)) that
influences (as said in section 4) the previous approximation.

Inherently the oriented tree graph ǧ, is considered the set {čk; k = 1, k̂} of every
path čk of which ¬∃ č ⊃ čk. Each čk is a path that goes from ňr to a node of ňöpd

to
which is associated an element of F pd (argument of (43)) or that goes from ňr to a
node of {ňq; q = 1, öpd} to which is associated the known value of an element of C (of
which (41)). Therefore is had

{čk; k = 1, k̂} = {{čka ;a = 1, â},{čkb ; b = â + 1, k̂}}

whose čka and čkb are respectively of the two types just now said, and thus the
searched approximation (43) of Dpd(x̃p) can be the

Dpd(x̃p) ≈ C̃pd +
â

∑
a=1

Λ̄kafmpd(xp̄pda
)

of which

C̃pd ≡
k̂

∑
b=â+1

Λ̄kbCkb xp̄pda
∈ X fmpd(xp̄pda

) ∈ F pd

where Ckb is one of the values known in C and Λ̄k (of which k ≡ ka
kb) is the product
of all factors of type Λqńnŋ that are associated with the nodes čk.

Substituting fmpd(xp̄pda
) with ∑p̂

p=1 δpp̄pda
fmpd(xp) in the previous approximation

of Dpd(x̃p), is had

Dpd(x̃p) ≈ C̃pd +
p̂

∑
p=1

Λ̃pdpfmpd(xp) (47)
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of which Λ̃pdp ≡ ∑â
a=1 Λ̄kaδpp̄pda

and whose {Λ̃pdp;p = 1, p̂} and C̃pd can be made
known by an algorithm based on

Æ⟨xp,{Rr̃pnn
;n = 1, n̂} // x,{Ccnb̃

;n = 1, n̂} // (40)⟩

which gives rise to

∂f(xp)
∂xn

≈
n̂

∑
n=1

îr̃pnn

∑
i=1
λpnnifr̃pnn(rr̃pnni)

where each λpnni is known and (with reference to (44)) relating to the point xpr̃pnni
.

Such algorithm is written as follows in a pseudo-language derived from the Visual Basic:

{Bp = 0;p = 1, p̂} n = npdöpd

For n = 1 To n̂
r̃ = r̃ppnn

For i = 1 To îr̃
Bpr̃i

= λppnni

Next i
Next n

C̃pd = 0 ib ≡ t

For q = 1 To öpd − 1

n = npd,öpd−q

If ib ≡ t Then
ib ≡ f

Call SubrA(q,n,{Ap;p = 1, p̂},{Bp;p = 1, p̂}, C̃pd)
Else
ib ≡ t

Call SubrA(q,n,{Bp;p = 1, p̂},{Ap;p = 1, p̂}, C̃pd)
Next q
If ib ≡ t Then

Call SubrB({Bp;p = 1, p̂}, C̃pd,{Λ̃pdp;p = 1, p̂})
Else

Call SubrB({Ap;p = 1, p̂}, C̃pd,{Λ̃pdp;p = 1, p̂})
End If

Sub SubrA(q,n,{Ap;p = 1, p̂},{Bp;p = 1, p̂}, C̃pd)
{Ap = 0;p = 1, p̂}
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For p = 1 To p̂

If {f̈pd,öpd−q(xp) − f̈pd,öpd−q,p = 0} ∈ C Then

C̃pd = C̃pd + Bpf̈pd,öpd−q,p

Else
For n = 1 To n̂
r̃ = r̃pnn

For i = 1 To îr̃
Apr̃i

= Apr̃i
+ Bpλpnni

Next i
Next n

End If
Next p
End Sub

Sub SubrB({Ap;p = 1, p̂}, C̃pd,{Λ̃pdp;p = 1, p̂})
For p = 1 To p̂

If {fmpd(xp) − f̃mpdp = 0} ∈ C Then

C̃pd = C̃pd +Apf̃mpdp

Λ̃pdp = 0

Else

Λ̃pdp = Ap

End If
Next p
End Sub

7 Conclusion
The definitions, procedures and results presented in this paper have been used to

implement a computer program to which has been given the name PEEI (as acronym
for “Programma agli Elementi di Estensione Infinitesima”) and which is aimed at nu-
merically solve any differential analytical model.

More precisely, this program calculates (if is not impossible) a numerical solution
of every system of partial differential equations, with number of equations not lower
than that of its functions unknowns, and subjected to any additional condition like
those initial or boundary.

The program PEEI is freeware and available in http://www.giacomo.lorenzoni.name/peei/
together with numerous application examples that confirm its reliability through the
comparison of its solutions with those exact.
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